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Abstract

In this work we analyse solutions for network situations, based on the basic properties of lin-
earity and symmetry. Through such analysis, it is shown a relation ship between linear symmetric
solutions and the representation of the group of permutations for the cases of three and four agents
(nodes). Finally, additional properties are included in order to obtain axiomatic characterizations
of certain classes of solutions.
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1 Introduction

The way in which people can cooperate (or organize) through networks is a point of interest in many
applications. Examples of the effects of social networks on economic activity are abundant and perva-
sive, including roles in transmitting information about jobs, new products, technologies, and political
opinions. A common denominator among these situations is that the way in which players are con-
nected to each other is important in determining the total productivity or value generated by the
group.

Myerson (1977) made a contribution in augmenting a cooperative game by a network structure
specifying which groups of players can communicate and achieve their worth. The feasible groups
are the ones whose members can communicate via the given network. This author showed that there
exists an extension of the Shapley value (Shapley, 1953) to these kind of cooperative games, providing
a simple characterization of it. This allocation rule has come to be called the Myerson value in the
subsequent literature.

In a more general context, Jackson and Wolinsky (1996) have introduced a class of games — network
games — where the value generated by a group of players depends directly on the network structure.
They have extended the Myerson value to network games and study the stability and efficiency of
social and economic networks, when selfinterested individuals can form or sever links.

More recently, Jackson (2005) take an axiomatic point of view for solving network games and
presents a family of allocation rules that incorporate information about alternative network structures
when allocating value.

In this article we study solutions for network games that satisfy the elementary properties of
linearity and symmetry, for the cases of three and four players. This study presents the innovative use
of basic representation theory® of the group of permutations of the set of players (symmetric group)
and provides a different perspective than the more ‘traditional’ approaches.

Roughly speaking, representation theory is a general tool for studying abstract algebraic structures
by representing their elements as linear transformations of vector spaces. It makes sense to use it,
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since every permutation may be thought of as a linear map? and it presents the information in a more
clear and concise way.

In a few words, what we do is to compute direct sum decomposition of the space of network games
(via the space of value functions) and the space of payoffs into “elementary pieces”. According to this
decomposition, any linear symmetric solution when restricted to any such elementary piece is either
zero or multiplication by a single scalar; therefore, all linear symmetric solutions may be written as a
sum of trivial maps.

With a global description of all linear and symmetric solutions, it is easy to understand the re-
strictions imposed by other conditions (e.g., the efficiency axiom). We then use such decomposition to
provide, in a very economical way, a characterization for the class of linear symmetric solutions and
the class of all linear, symmetric and efficient solutions.

The paper is organized as follows. We first recall the main basic features of network games and
their solutions in the next section. A decomposition for the space of value functions with three and
four players is introduced in section 3. In section 4 we show an application of this decomposition by
giving characterizations of linear symmetric solutions and section 5 concludes the paper.

2 Preliminaries

Let N = {1,2,...,n} be a fixed nonempty finite set, and let the members of N be interpreted as players
(or nodes) who are connected in some network relationship.

A network is a list of which pairs of players are linked to each other and is modeled as a non-directed
graph®.

Definition 1 A network g is a set of unordered pairs of players {i,j}, where {i,j} € g indicates that
i and j are linked under the network g.

When there is no place of confusion and for simplicity, we will write just ij to represent the link
{i,7}. In this way, ij € g indicates that ¢ and j are linked under the network g.

More formally, let g%V be the set of all subsets of N of size 2. In other words, gV will denote the
complete network where all the players are linked with each other.

The set of all possible networks or graphs on N will be denoted by G:

G={glgcy"}

The network obtained by adding link 45 to an existing network g is denoted g+ ij and the network
obtained by deleting link ij from an existing network ¢ is denoted g —ij .

For g € G, let N(g) be the set of players who have at least one link in g. That is, N(g) = {i | 35
s.t. ij € g}. Let n(g) = [N(g)| be the number of players involved in g.

Let Li(g) be the set of links that player i is involved in, so that Li(g) = {j | 3j s.t. ij € g}, and
let £i(g) = |Lig)!-

Given any subset (coalition) S C N, let g% be the complete network among the players in S and
let

gls={ij |ij € g andi,j € S}

Thus g |g is the network found deleting all links except those that are between players in S.
Remark 1 Notice the distinction between the notation g% which is the complete network among players

in S, and g | which is the network found by starting with some g and then eliminating links involving
players outside of S.

2The precise statement will be provided in Sec. 3.
3That is, it is not possible for one individual to link to another, without having the second individual also linked to
the first.
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Definition 2 A path in a network g € G between players i and j is a sequence of players i1, ..., ix
such that igixs1 € g for each k € {1,..., K — 1}, with iy =i and ig =7 .

From the path relationships in a network, it can be naturally partitioned into different connected
subgraphs that are commonly referred to as components.

Definition 3 A component of a network g, is a non-empty subnetwork g’ C g, such that
a) ifi,j € N(g') where j # i, then there exists a path in g' between i and j
b) ifi € N(¢') and ij € g, thenij € g’

In this way, the components of a network are the distinct connected subgraphs of a network. The
set of components of g will be denoted by C(g).

Notice that g = Ugec(g)g’ and under this definition of component, a completely isolated player
who has no links is not considered a component.

Also we need to define certain sets which are used in the sequel. For this purpose, given a network
g with a fixed number of links k, we will say that a number [ is conceivable (for k) if there exists a
player such that ¢;(g) = 1.

Definition 4 Let A, be the set defined by

A, = {(kl) | ke {1, Co (Z) } and l is conceivable for k}

It is of interest to know the total productivity of a graph and this notion is captured by a value
function.

Definition 5 A wvalue function is a mapping
w:G—R
such that w(@) = 0. The set of all possible value functions is denoted T, i.e.,
I'={w:G—Rw@) =0}

The number w(g) specifies the total value that is generated by a given network structure g. The
calculation of value may involve both costs and benefits and is a richer object than a characteristic
function of a cooperative game, as it allows the value that accrues to depend on the network structure
and not only on the coalition of players involved.

Given wi,ws € I' and ¢ € R, we define the sum w; + wy and the product Awq, in I', in the usual
form, i.e.,

(w1 +w2)(g) = wi(g) +w2(g) and (Aw1)(g) = Awi(g)

respectively. It is easy to verify that I' is a vector space (over R) with these operations.

For subsequent analysis we will use the notation G and I'™ to emphasize over a particular
number n of players considered in the set G and on the space I, respectively.

An interesting sub-class of value functions are those where the value to a given component of a
network does not depend on the structure of other components. This precludes externalities across
(but not within) components of a network.

Definition 6 A value function w is component additive if for any g € G:

> wlg) =wlg)

9'€C(g)
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Definition 7 A network game is a pair (N,w), where N is the set of players and w is a value function.

In order to know how the total productivity of a network (in a network game) is allocated among
the individual nodes, we need to define the notion of a solution.

Definition 8 A solution is a function
p:GxI'—>R"

where @;(g,w) is interpreted as the utility payoff which player i should expect from the network game
(N,w) for a fized network g.

The previous notion of a solution is the one that we will use for the analysis in this article. In the
same sense, it is common to find in the literature the concept of an allocation rule.

Definition 9 An allocation rule is a function ¢ : G X I' — R™ such that

Z vi(g,w) =w(g) Vg and Yw (1)

i€EN

Remark 2 Notice the difference between the concepts of solution and allocation rule. While a solution
is a more general concept, an allocation rule is a more restrictive one: it is a solution that satisfies the
condition imposed by (1), which stands for an efficiency-type property.

Due to the richness of network games, several solutions (allocation rules) have been given for these
problems. For example, as mentioned in the introduction, the first paper that proposed a value concept
for network problems was Myerson (1977). It is an allocation rule that was defined in the context of
cooperative games with communication structures, that is a variation on the Shapley value. The
following presentation of the Myerson value is due to Jackson and Wolinsky (1996), which it is an easy
extension of the main theorem of Myerson (1977). Such allocation rule satisfies the following axioms.

Axiom 1 (Component balance (CB)) An allocation rule ¢ satisfies component balance if for any
component additive w, g € G, and g’ € C(g)

> pilgw) =wld)
i€EN(g")

Component balance requires that if a value function is component additive, then the value generated
by any component be allocated to the players among that component.

Axiom 2 (Equal bargaining power (EBP)) An allocation rule ¢ satisfies equal bargaining power*
if for any component additive w and g € G
@i(g,w) = ¢;(g — ij,w) = p;(g,w) — ¢;(g —ij,w)
This axiom does not requires that players split the marginal value of a link; instead, it just requires

that they equally benefit or suffer from its addition.

Theorem 1 (Jackson and Wolinsky, 1996) There exists a unique allocation rule M that satisfies
CB and EBP. Moreover, it is given by

SII(IN|—[8] = 1)!
ZH(\ = 151-1)

Mg,w) = V]! [w(9 Is,.) = (g |s)] @)

SCN_;

for all g € G and any component additive w.

4This was called fairness by Myerson (1977).
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2.1 The basic properties

For the study of solutions of network games using representation theory techniches, the reasonable
requirements that are necessary to impose are the usual linearity and symmetry axioms. These axioms
will be a key ingredient in subsequent developments. Next, we define them.

First, the group of permutations of N, II,, = {m : N — N | 7 is bijective}, acts on G (set of
networks) as well as on R™ (space of payoff vectors) in a natural way; i.e.,

e For g € G and m € II,,:
w(g) = {n(i)x(j) | i € g}
o For x = (21,22, ...,2,) € R" and 7w € II,,:
T (T1, 22,5 s Tn) = (Tr(1), Tr(2)s s Tr(n))

Moreover, the group II,, acts on the space of value functions, I, in the following way. If w € I" and

7w € II,, then
[r-wl(9) =w[r " (9)]

Now, the formal restrictions are the following.
Axiom 3 (Linearity) The solution ¢ is linear if for every g € G, every wy,ws € I' and every ¢ € R:

@(g,c- w1 +w2) =c-p(g,wr) + ¢(g,w2)
Axiom 4 (Symmetry) The solution ¢ is said to be symmetric if and only if
e(m(g),m w) =m-p(g,w)
for every m € I1,,, every g € G and every w € T'.

The axiom of linearity means that in the sharing of benefits (or costs) stemming from two different
issues, how much each player obtains does not depend on whether they consider the two issues together
or one by one. Hence, the agenda does not affect the final outcome. Also, the sharing does not depend
on the unit used to measure the benefits.

Whereas, the symmetry axiom means that player’s payoffs do not depend on their names and it is
only derived from his influence on the value of the networks. The axiom requires that if all that has
changed is the labels of the players and the value generated by networks has changed in an exactly
corresponding fashion, then the allocation only change according to the relabeling

Remark 3 [t is not difficult to show that the Myerson value is a solution that satisfies the properties
of linearity and symmetry.

2.2 Group action of II,

The symmetric group II,, acts on I' via linear transformations (i.e., I' is a representation of II,,). That
is, there is a group homomorphism p : II,, — GL(T'), where GL(I") is the group of invertible linear
maps in I'. This action is given by:

(m- w)(g) = [p(m)())(g) = wlr ™" ()]

for every m € II,,, w e "' and g € G.

Moreover, this assignment preserves multiplication (i.e., is a group homomorphism) in the sense
that the linear map corresponding to the product of the two permutations 717y is the product (or
composition) of the maps corresponding to 71 and 7, in that order.

Similarly, the space of payoff vectors, R™, is a representation for II,,:

T (21,225 w0 Tn) = (Tr(1)s Tr(2)s -0 Tre(m))
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Definition 10 Let X and Xo be two representations for the group I1,,. A linear map T : X1 — Xo
is said to be I, -equivariant if T(w - z) =7 - T(z), for every w € II,, and every xz € X;.

Definition 11 Let Y be a subspace of a vector space X.
o Y is invariant (for the action of I1,,) if for every y € Y and every w € 11,,, we have that

TyeyY

o Y is irreducible if Y itself has no invariant subspaces other than {0} and Y itself.

Remark 4 Notice that, what we are calling a linear symmetric solution (for network games) ,in the
language of representation theory means a linear map that is 11, -equivariant.

3 Decompositions

In order to study linear symmetric solutions (on I') by taking advantage of the group action of II,, on
T" and on R™, it is necessary to obtain a decomposition of these spaces into irreducible representations.
We begin with the decomposition of R™ into irreducible representations, which is easier, and then
proceed to do the same thing for I'; that is, we wish to write R™ as a direct sum of subspaces, each
invariant for all permutations in II,, and in such way that the summands cannot be further decomposed
(i.e., they are irreducible).
For this, let

U, = {(t,t,...,t) €R" |t € R} and VH:U;:{zeR"\Zx,-:o}
i=1

The spaces U,, and V,, are usually called the “trivial” and “standard” representations, respectively.
Notice that U, is a trivial subspace in the sense that every permutation acts as the identity transfor-
mation.

Every permutation fixes every element of U, so, in particular, it is an invariant subspace of R™.
Being 1-dimensional, it is automatically irreducible. Its orthogonal complement, V,,, consists of all
vectors such that the sum of their coordinates is zero. Clearly, if we permute the coordinates of any
such vector, its sum will still be zero. Hence V;, is also an invariant subspace.

Proposition 1 The decomposition of R™, under II,,, into irreducible subspaces is:
R*"=U,®V,

Proof. First, it is clear that U, N'V,, = {(0,...,0)}. We now prove that R" = U,, + V,:

i) If z € (U, + V,,), then z € R" since (U,, + V,,) is a subspace of R™.

ii) For z e R" let z = %Z?:l z; and z can be written as z = (2,%,...,2) + (21 — 2,22 — Z, ..., 20, — 2);
and so, z € (U, + V).

Now, since U, is 1-dimensional, then it is irreducible and to check that V,, is also irreducible, it is
enough to use an induction argument. m

In this way, this result tell us that R™ as a vector space with group of symmetry II,,, can be written
as an orthogonal sum of the subspaces U,, and V,,, which are invariant under permutations and which
can no longer be further decomposed.

The decomposition of I' is carried out in several steps. First, we establish a partition (into distinct
classes) of the set of networks in the following way.
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Definition 12 Let g1,92 € G\ {2}, we will say that g1 and go belong to the same class if Ir € 11,
such that ©(g1) = ga.

Let m¢ € N be the number of different classes in which the set G\ {@} can be partitioned according
to Definition (12). Thus, if G; denotes the set of networks that belong to the class j, then:

G\ {o} = UG

where we can notice that G; NG = @ if j # k.
For further analysis, we will asume that G is the class of networks with exactly 1 link and G,
is the class of networks that contains the complete network; i.e.,

G = {g €eG | ‘g‘ = 1} and Gmg = {.(]N}

Now we turn back to the decomposition of I'. For each k € {1,...,m¢}, define the subspace of
value functions

Ipy={weTl |w(g) =0if g ¢ Gy} 3)

Then the space I' has the following decomposition:

I'= @I (4)
k=1

Each subspace T’y is invariant under II,, and the decomposition is orthogonal with respect to the
invariant inner product on I' given by

(wi,w2) = Y wi(g) - walg) (5)

geG
Here, invariance of the inner product means that every permutation 7 € II,, is not only a linear map
on I, but an orthogonal map with respect to this inner product. Formally, (7 - w1, 7 - wa) = (w1,w2)
for every wi,ws €T,
3.1 The case n =3
According to the previous definitions, for the set of networks of n = 3 nodes, G®), it turns out that

mge) = 3 and these classes are given by

G = ({12} {13}, {23}} \

v
G = {{12,13},{12,23},{13,23}} .; A A
AN

G = ({12,13,23}} .¢”:q

and according to (3), the space of value functions is decomposed as
3 3 3
r®=r®erd or

The next goal is to get a decomposition of each subspace of value functions FS) into irreducible
subspaces and so, we will get it for T'3).
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The following value functions play an important role in describing the decomposition of the space
T. For k € {1,...,mg}, define ¢; € T}, as follows

_ 1 ifgeGy
ck(9) _{ 0 otherwise ©6)
Note that I'y,, = Rep,-
Also, for each k € {1,...,mg} and for each z € R™; define the value function z* € T'y, as follows
. Z (zi +25) ifgeGy
2% (g) =< ijeg
otherwise

Definition 13 Suppose X1 and X2 are two representations for the group II,,, i.e., we have two vector
spaces X1 and Xo where 11, is acting by linear maps. We say that X; and Xo are isomorphic if
there is a linear map between them, which is 1 — 1 and onto and that commutes with the respective
1L, -actions. Formally, there is an invertible linear map T : X1 — Xo such that T'(7-z) = 7-T(z), for
every m € II,, and every x € X;. We then write X1 ~ Xo.

For our purposes, X; will be an irreducible subspace of I" and X» an irreducible subspace of R™.

Isomorphic representations are essentially “equal”; not only are they spaces of the same dimension,
but the actions are equivalent under some linear invertible map between them.

The next Proposition provides a decomposition of the space of value functions for n = 3 players
(nodes), into irreducible subspaces.

Proposition 2 For k € {1, 2},
¥ =c® e R

where C,(f) = (cy) ~ U3 and R](f) = {zk |z € Vg} ~ V3. The decomposition is orthogonal.
Proof. Since for an arbitrary representation X of Ss, one can write

X = U§Ba ® U/@b o V3€B(: (7)

and there is a way to determine the multiplicities a, b and ¢; in terms of T = (123) and o = (12),
which generates S3. ¢ for example, is the number of independent eigenvectors for T with eigenvalue €
(denoting by 1,&,€2 the cube roots of unity), whereas a + c is the multiplicity of 1 as an eigenvalue of
o, and b+ c is the multiplicity of —1 as an eigenvalue of o.

In this way we start by showing that l",(f) has exactly 1 copy of Us and 1 copy of Vs, if k € {1,2}.
It is clear that B = {wy | § € G\{@}} form a basis for T®, where

=11 d9=9
wylg) = { 0 otherwise ®)
ForT'®), it is easy to verify that [r]y has the characteristic polynomial p(z) = [(z—1)(z—e)(z— 52)]2 (z—

1) and [o]y has the characteristic polynomial p(z) = (x + 1)*(x — 1)°. From these and (7), we have
thatc=2,a+c=>5 and b+ c=2. Then

r® — USs g V22

This implies directly that if k € {1,2}, then every I'y. has exactly 1 copy of Us and 1 copy of V3, since
T = Remg >~ Us and dimI'y, = 3.

Now, define the map T* : R™ — T by T*(2) = 2*. This map is an isomorphism between C,(f) and
Us (similarly, between R,(f) and V3) since it is linear, Ss-equivariant and 1 — 1. From Proposition 1
we have the splitting R® = Uz @ V3. Thus, inside of T'y, we have the images of these two subspaces:
C® = ThUs) and RP) = T*(V3).

Finally, the invariant inner product (,) gives an equivariant isomorphism, in particular must pre-
serve the decomposition. This implies orthogonality of the decomposition. ®



Axiomatic solutions for network situations | 67

Remark 5 Recall that F:(SS) is a trivial representation generated by the value function that assigns 1
to the complete network and O elsewhere.
Whereas from the above Proposition, it is not difficult to verify that for k € {1,2}:

¥ = {weT® |w(g) = wlge) if lor| = lgal}

and

RY={wer?| S w=0
{g€G:|g|=k}

Proposition 2 gives a decomposition of the space of games that is a key ingredient in our subsequent
analysis.

Set C®) = 0{3) & C§3) @CéS). This is a subspace of value functions whose value on a given network
g, depends only on the number of links that form such network. According to Proposition 2, C3) is
the largest subspace of T®) where S5 acts trivially’. Let R® = R® @ R®). Then

r® = c® g RrG

Thus, given a value function w € I'®) we may decompose it relative to the above as w = ¢+ 7,
where in turn v = Y apex, and 7 = Zz}f This decomposition is very well suited to study the image

of w under any linear symmetric solution. The reason being the following version of the well known

Schur’s Lemma®.

Theorem 2 (Schur’s Lemma) Any linear symmetric solution
0GP xT® = ¢ x [Ccs) @ R<3)] SR =T Vs

satisfies
a) p[G® x C®] cUs
b) ¢ [G® x R®] c vy

Moreover,

e for each k € {1,2,3}, there is a constant 3oy, € R such that for every (g,w) € G®) x C’,(f),

o(g,w) =y (1,1,1) € Us
e for each k € {1,2}, there is a constant B;, € R such that for every (g,zk) e GO x R,(Cs),
0(9,2") = Brz € Vs

For many purposes it suffices to use merely the existence of the decomposition of the value function
w € I'® without having to worry about the precise value of each component. Nevertheless it will be
useful to have it. Thus we give a formula for computing it.

Proposition 3 Let w € I'®). Then

3 2
w=Zakck+Zz,§' (9)
k=1 k=1

where,

Sie., 0w = w for every 6 € S3 and every w € c®),
6See the Appendix for a precise statement.
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i) ay, is the average of the values w(g) with |g| = k:

L 2yg=v(9)

o = 2lal=k9l9)
" HoeGTlgl =k

ii) For every k € {1,2}:
()= Y kwlg) = D B=kw(y)

lg|=k lgl=k
£i(g)=Fk 0(9)#k

Proof. We start by computing the orthogonal projection of w onto C®. Notice that {c} is an

orthogonal basis for C®, and that |lex||” = [{g € G® | |g| = k}|.
Thus, the projection of w onto C'®) s

3

Z (w, ck>> o

=1 <Ck7 Ck

and so,
~ {w,er) 2=k @(9)
(ekrer)  [{g € G [ g =k}
Now, for each k € {1,2,3}, we define h¥ : T®) — R? as
hw) = > w9

lgl=k
Li(g)=k

where each k¥ is S3-equivariant and observe that h®(w) = w (g™) (1,1,1). Let z € Vs, then h¥ (') =0
if k # 1, whereas (by Schur’s Lemma) for k € {1,2,3}, I\, € R such that h*(z*) = \;2.
Let p : R* — V3 be the projection of R3 onto Va given by

pi(z) =z, — T

where T = %Z?:l x;. This projection is equivariant, sends Us to zero and it is the identity on V3.
Since (po h*) (w) = Arzy, then 2, = s=p (h* (w)). Thus, we evaluate

p (W (W) = Mz
= > k(g - Y B-kwlg)
Gk o

3.2 The case n =4

As we have noticed, all previous applications and results follow from the decomposition of the space of
value functions into direct sum of irreducible subspaces. In this part, we provide such decomposition
for the particular case of four players.

In the case of three players, the set G was partitioned into 3 classes (the jth class contains
networks with exactly j links, for j € {1,2,3}). However, the partition of G™® does not follow the
same line of reasoning. The next example shows that there are networks with the same number of
links, however they belong to different classes (recall Definition 12).

Example 1 Let N ={1,2,3,4}.
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e The networks g1 = {12,13,24} and go = {12,24,34} belong to the same class, since there is a
permutation ™ € Sy such that w(g1) = g2. Such a permutation is given by w(1) = 2, w(2) = 4,
m(3) =1 and w(4) = 3.

o The networks g1 = {24,34} and g» = {12,34} do not belong to the same class, since fm € Sy
such that ©(g1) = ga.

Notice that |G(4>\ {@}} = 63 and according to Definition 12, mgwa) = 10 classes. The following
networks are representatives of each class.

G 165 (6] Gy s

G 7
1 2 1 2
.'1[ :4 -'i: I-J

Whereas the number of networks belonging to each class is shown below.

3 g ¥ 43 1

E 1 2 3 4 5 6 7 8 9 10
G 128 12 4 4 12 3 6 1

We follow the same line of reasoning as before, i.e., we first obtain a decomposition of each subspace
)

of value functions I‘;f into irreducible subspaces and so, we will get it for T4,

For that purpose, let z € V4 and for k € {1,4,5,6,9} define the value functions z* € F;f) as

) (zi+25) ifge GW
Hg=] 05t ) (10)
0 otherwise

also define 22,22 € ng) and 27,27 € F§4>, as

S (z+z) ifgeG and £y(g) =1 S (st 2z) ifgeG and £y(g) #£1

22(g9) =< ijeq c 22 (g) =4 iice
0 otherwise 0 otherwise
(11)
, > (zit+z) ifge G<74) and {1(g) =2 » > (zitz) ifge Gg‘l) and ¢1(g) # 2
z'(9) =4 ij€y ;20 (9) =1 ijeg
0 otherwise 0 otherwise

(12)
The nature of the previous value functions will be justified in the decomposition of '), presented
in the following

Proposition 4 Fork € {1,...,9}, the decomposition of each F§c4) (under Sy ) into irreducible subspaces
1s:
Y =c¥ e rY o1

where,

o CW =)~ Uy if kefl,...,9}
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@ {FzeVi} =V, if k€ {1,4,5,6,9}
o R = , .
k {zk\zem}u{zk \z€V4} ifke {27}

1
. T,£4) = (C,Efl) ® R](f)) does not contain any summands isomorphic to either Uy nor Vjy.

The decomposition is orthogonal.
Proof. The proof is based on the use of character theory, which it is a remarkably effective technique
for decomposing any given finite dimensional representation into its irreducible components. Recall
that if p : H — GL(X) is any representation, the character of X is the complez-valued function
Xx : H — C, defined as xx(h) = Tr (p(h)). For xi,Xs € Celass(H), it is defined an Hermitian inner
product on Cejass(H) by

(X1, X2) =

llzr(h)m(h) (13)

H|
heH
This inner product allows to calculate the multiplicities of irreducible subspaces in a representation.
For instance, if Z = ZfB"" 53] Z?“Z G- P Z;-D"V, then the multiplicity Z; (irreducible representation)
in Z, is given by a; = (Xz, Xz, ), where (,) is the inner product given by (13).
Then, <Xr<4>7XU4> and <Xr<4>sXV4> are the number of subspaces isomorphic to the trivial (Uy) and
k k

standard representation (Vi) within F;:l), respectively. The characters for each F,(f) are given by’ :

1 6 8 6 3
Si (V)] [(12)] [(A23)] [(1234)] [(12)(34)]
.| 6 2 0 0 2
iV, i | 12 2 0 0 0
4 4
NS N 1 0 1 3
¥ 12 0 0 0 4
4 4
™, o 2 1 0 0
r{¥ 1 1 1 1 1

Thus from (13), <XF§C")7XU4> =1 for each k € {1,...,10} and

1 ifke{1,4,56,9}

(e xu ) =1 2 ifke{2m
0 ifke {3,810}

The last part is to identify such copies of Uy and Vy inside F;ﬁ‘ To this end, for k € {1,...,10}
let fr : Uy — C’,(cd) be given by fir(u) = wg, in which there exists t € R such that u =t (1,1,1,1) and
wi(9) =t if g € G and wi(g) = 0 otherwise. The function fi is an isomorphism between Uy and
0,5,4) since it is linear, Sy-equivariant and one to one. Thus, F;f) contain the image of this subspace:
e = fi(Uy).

Now, for k € {1,4,5,6,9} define the functions Ly, : V4 — F;f) by Li(2) = 2* (given by (10)).
These maps are isomorphisms between Rff) and Vy, and Rf:l) = Li(Va).

In the same way, for k € {2,7} define the functions Ly, Ly : V* — F,(:l) by Li(z) = 2* and
Ly (2) = 25 (given by (11) and (12)), respectively. Thus, R;f) = Lg(Va) U L (Va).

Orthogonality of the decomposition follows again from the fact that the invariant inner product (,)
gives an equivariant isomorphism, which preserves the decomposition. m

"In which a convenient basis is the one given in (8).
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It is not difficult to verify that I' %) = (c10) > Uy is a trivial representation generated by the value
function that assigns 1 to the complete network and 0 elsewhere.
On the other hand, from the above Proposition it turns out that for k € {1,...,9}:

C,(f) ={we F,(f) |w(g1) =wl(ge) if g1,92 € G,(:l)}

Remark 6 Proposition 4 does not quite give a decomposition of Fff) into irreducible summands. The

subspace C,(f) is irreducible and R,(:l) is a direct sum of irreducible subspaces. Whereas T,E4) may or
may not be irreducible (depending on k), but as we shall see the exact nature of this subspace plays no
role in the study of linear symmetric solutions since it lies in the kernel of any such solution.

10
Set CW = @ C]St). This is a subspace of value functions whose value on a given network g, depends
k=1

10
only on the “shape” of such network®. Let R4 = @ RY and TW = & 7Y, Then
ke{1,2,4,5,6,7,9} k=1

@ — o g R@ g 7@
Corollary 1 Ifp: G® xT™ — R* is a linear symmetric solution, then for every (g,w) € G® xT®

¢(g,w) =0

Proof. Let ¢ : GW x W = gW x [0(4) @ RW EBT<4)] — R* = Uy @ V4 be a linear symmetric
solution. Assume X C T™ is an irreducible summand in the decomposition of T (even while we
do not know the decomposition of T as a sum of irreducible subspaces, it is known that such a
decomposition exists). Let p; and py denote orthogonal projection of R* onto Uy and Vj, respectively.
Now, ¢ : GW X' — R = U;®V, maybe written as ¢ = (p;0p, p2og). Denote by ¢ : X — G x4
the inclusion, then, the restriction of ¢ to X may be expressed as |, = ot = (propot,paopour).

On the other hand, pyopor: X — Uy and pyogpor: X — V, are linear symmetric maps; since X
is not isomorphic to either of these two spaces, thus Schur’s Lemma (see Appendix for the statement)
implies that p; o ¢ o and ps2 o ¢ ot must be zero. Since this is true for every irreducible summand X
of T™, ¢ is zero on all of T, m

Remark 7 According to Proposition 4 and Corollary 1, in order to study linear symmetric solutions,
one needs to look only at those value functions inside C @ R™ (i.e., one have to take care of those
copies of Uy and Vy, contained in F(4)).

4 Characterization of solutions

In this section we show how to obtain characterizations of solutions (for the case of n = 3 nodes) easily
by using the decomposition of a value function given by (9) in conjunction with Schur’s Lemma. In a
similar manner one could get these characterizations for the case n = 4.

We start by providing a characterization of all linear symmetric solutions ¢ : G®) x T'®) — R3 in
the following

Proposition 5 The linear symmetric solutions ¢ : G® x I'®) — R3 are precisely those of the form

pi(g,w) = Z Z Yk - w(g) + Z Z Yk0) - w(9) (14)

(k,€EAs |gl=Fk (k,0)€A3 |g|=k
1#0  £i(g)=l

for some real numbers {'y(kﬁl) | (k1) e A3}.

8Following Jackson and Wolinsky (1996), the value functions in C@ are known as “anonymous”.
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Proof. Let p: G® xTG) = R3 be a linear symmetric solution. According to Proposition 8, w € T(®)

decomposes as
3 2
=Y met Y
k=1 k=1
where by linearity,
3 2
w) = arp; (g.0) + > @i (9, 2)
k=1 k=1

Now, from Schur’s Lemma and Proposition 3, we have

3 2
©i(g,w) Z agay + Z Br (21);
k=1 k=1
> oy Zﬁ S kele) = D (3= hw(o)
[y e p——— k wlg wig
=k
2 g € G TIsl =K1 z, 2
ti(g)=k Li(9)#k
Fmally, the result fol/ows from grouping terms and by setting 71 o =281, va,y = F + B
Yo =% — B2 Ve = F +268; and vz = 3. =

Corollary 2 The space of all linear and symmetric solutions on G®) x T'®) has dimension |As| = 5.

Once we have such a global description of all linear symmetric solutions, we can understand restric-
tions imposed by other conditions or axioms. For example, we can consider that if all players decide
to form the complete network (there is a link between any pair of players), then the value w (gN) is
allocated among all the players. Formally:

Axiom 5 (Efficiency) The solution ¢ is efficient if and only if for every w € I':
> pi(gV,w) = w (V)
ieN

Notice that, any allocation rule satisfies the efficiency axiom since it is the condition (1) restricted
to gV
From the point of view of representation theory, the efficiency axiom has the following implications.

Proposition 6 Let ¢ : G®) x I'®) — R3 be a linear symmetric solution. Then ¢ is efficient if and
only if

i) @i(g",ex) =0 for k € {1,2}; and
i) (", c3) = %
o L
Proof. First of all, <C§3)) is exactly the subspace of value functions w where w (gN) = 0. Of these,

those in R®) trivially satisfy ;¢ y 9i(g9",w) = 0, since (by Schur’s Lemma) ¢ (G x R®)) C Vj.
Thus, efficiency need only be checked in C®). Since ¢, is fixed by every permutation in S, we have

> wigN er) = 309", k)

i€EN

s0, ¢ is efficient if and only if for k € {1, 2},

3pi(g™, ) =i (g) =0
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and
3p,(g",c3) =3 (g) =1

]

Recall that C®) is a subspace of functions whose value on a given network g, depends only on the
number of links that form such network. The next Corollary characterizes the solutions on network
games with these value functions in terms of linearity, symmetry and efficiency. It turns out that
among all linear symmetric solutions, the egalitarian solution is characterized as the unique efficient
solution on C'®). Formally,

Corollary 3 Let ¢ : G®) x T'®) — R3 be a linear, symmetric and efficient solution. Then for all
welC®:

In other words, all linear, symmetric and efficient solutions (e.g. Myerson’s value) coincide with
the egalitarian solution when restricted to these type of games, C3)

Now, another immediate application is to provide a characterization of all linear, symmetric and
efficient solutions.

Theorem 3 The solution ¢ : G®) x I'®) — R3 satisfies linearity, symmetry and efficiency axioms if
and only if it is of the form

w N 2
pilg™ W) = <§ VoS | S ket X0 -kl (15)
k=1 gl= gl=
fl(s‘?)jk‘ 17‘,(5‘7):16

for some real numbers {3y, 85}
Proof. Let o : G® xT®) = R3 be a linear, symmetric and efficient solution; and w € T'®). Then, by
Proposition 3, Schur’s Lemma and Proposition 6:

2

3
%(QN»W) = Zak:% (QN»Ck) + Z% (ngzlg)
k=1 k=1

2
= azp; (gN7(:3) + Zﬁk (),

= ) S Y kel - Y B Rule)

k=1 lgl=k lgl=k
Li(g)=k Li(g)#k

Corollary 4 The space of all linear, symmetric and efficient solutions on G® x I'® has dimension

{81, B} = 2.

Example 2 The Myerson value wM is a solution that satisfies the axioms of linearity, symmetry and
efficiency. Thus (for n = 3), v™ is of the form (15) and its corresponding parameters are 3, = 1/6
and By =0.
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5 Conclusion

The point of view that we take in this article depends heavily on a decomposition of the space of value
functions as a direct sum of ‘special’ subspaces. In the cases when n = 3,4, it was decomposed as a
direct sum of three orthogonal subspaces: a subspace of anonymous value functions, another subspace
which we call R and a subspace T (wich is zero for the case of n = 3 nodes) that plays only the
role of the common kernel of every linear symmetric solution. Although R(™ does not have a natural
definition in terms of well known network theoretic considerations, it has a simple characterization in
terms of vectors all of whose entries add up to zero.

Characterizations of solutions follow from such decomposition in an very economical way. So, an
open challenge is to obtain the general decomposition for '™ into direct sum of irreducible subspaces;
since mathematically, the general case seems to has a much more complicated structure.
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