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Abstract

This paper analyzes individual dynamic decisions on when to face difficult tasks. We

argue how individual dispositions, that is, the expression of non-cognitive dimen-

sions, as perseverance or confidence might drive these decisions. Specifically, when

experiencing low dispositions, the decision maker gets trapped into facing easy tasks

that offer low economic outcomes while when experiencing high dispositions, she is

willing to always deal difficult tasks that are, in contrast, more rewarding. When

outcome achievements motivate the decision maker, she decides to move from low

value easy tasks to high value difficult tasks at some point.
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Resumen

Este trabajo analiza decisiones individuales sobre el momento óptimo en el que en-

frentarse a tareas dif́ıciles. En este trabajo argumentamos cómo las habilidades

no cognitivas, pueden determinar estas decisiones. Espećıficamente, un individuo

con bajas habilidades, prefiere desarrollar tareas fáciles aunque éstas ofrezcan pagos

bajos. Sin embargo, un individuo con altas habilidades prefiere desarrollar tareas

dif́ıciles que ofrecen pagos altos. Cuando la consecución de pagos motiva al indi-

viduo, entonces éste decide pasar de tareas fáciles a dif́ıciles.
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1 Introduction

One of the reasons as to why individuals tend to avoid difficult tasks is because they

do not feel able enough to confront them. Not coping with them might, however,

imply foregoing the opportunity of getting better economic outcomes, not available

otherwise. As (Liebow, 1967) documents in his study of the Negro male community

of Washington inner city:

”Convinced of their inadequacies, not only do they not seek out those few better-

paying jobs which test their resources, but actively avoid them, gravitating in a mass

to the menial, routine jobs which offer no challenge -and therefore posse not threat-

to the already diminished images they have of themselves(...). Thus, the man‘s low

self-esteem generates a fear of being tested and prevents him from accepting a job

with responsibilities or, once on a job, form staying with it if responsibilities are

thrust on him, even if wages are commensurably higher.”

The story above offers two interesting insights. The first one is that individual

dispositions might dramatically influence decisions of huge economic relevance. In

this spirit, when documenting the relationship between individuals’ dispositions to

strive for success, and upward mobility patterns in the United States, (Atkinson

and Feather, 1966) highlight how, despite of the fact that education is the main

determinant of upward mobility, individual dispositions should not be neglected. In

fact, 65% of the people who exhibited upward mobility patterns at a higher extent,

only had high school education or less.1 The second one is the trade-off between

tasks’ difficulty and their associated outcomes. While a routine job is probably more

easily developed than a very demanding one, good economic outcomes, as higher

wages or promotion opportunities, might only be available in the latter.2

Our purpose in this paper is to understand and highlight the role played by indi-

vidual dispositions in shaping avoidance behavior. We interpret individual disposi-

tions as an expression of non-cognitive abilities.3 Examples of non-cognitive abilities

are emotional stability, that manifests, among others aspects, in self-confidence and

self-esteem, or conscientiousness, that manifests, among others aspects, in persever-

ance.4 In order to do it, we develop a tractable model in which the decision maker,

henceforth DM, who is characterized by a disposition level, decides the optimal time

to deal with difficulties.
1To establish comparisons between the prestige of occupations of parents and sons, private households populated

by people older than 21 were interviewed. Specific measures of dispositions to strive for success were collected.
2Also, as (Atkinson and Feather, 1966) suggest, high prestige occupations are perceived as being more difficult

to attain than low prestige occupations. This hierarchy can be seen as a series of tasks in which the outcome value

comes together with difficulty.
3We will interchangeably use the term state, disposition or simply ability when referring to the non-cognitive

ability level that the individual enjoys.
4See (John and Srivastava, 1999) for the Big Five domains of non-cognitive abilities, their traits and facets.
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Our approach is as follows. We consider a dynamic framework in which at every

point in time the DM might experience two states, namely, the full capacity state

and the deteriorated capacity state, with some (constant) probability. In the full

capacity state she enjoys high dispositions while in the deteriorated capacity state

her dispositions are low. Tasks are of two types, namely, easy and difficult. On

the one hand, getting good economic outcomes is less likely under difficult than

under easy tasks but on the other hand, outcomes associated to difficult tasks are

more valuable than the ones associated to easy tasks. We consider that states

and economic performance are positively related, specifically, the higher the DM’s

disposition the higher the probability of being successful when developing a task,

either easy or difficult. It is worth mentioning that no effort decision is analyzed

here. The only decision of the DM has to make is when to confront difficulties. We

assume that once she decides to confront them, she sticks at this decision forever.

We also study the case in which the DM’s disposition is sensitive to outcome

achievements. As (Mruk, 2006) points out, the demands of life are not constant, so

self-esteem levels will fluctuate depending on what is happening in a persons life.

Redundancy, bereavement, illness, studying, gaining a qualification, parenthood,

poverty, being a victim of crime, divorce, promotion at work will all have an impact

on our self-esteem levels. Self-esteem levels go up and down and can change over

time. Also, as (Bénabou and Tirole, 2002) point out, motivation helps individuals

to persevere in the presence of setbacks. We formalize this idea by allowing the

probabilities of experiencing the full and the deteriorated capacity state to evolve

over time. Specifically, we assume that their value at a given period depends on their

value and on the likelihood of good economic outcomes in the previous period.5

Our results are as follows. We find that a low disposition DM will avoid difficulties

forever while a high disposition DM will cope with them since the beginning. Thus,

individuals with poor abilities get trapped into low value easy tasks. However, when

motivation plays a role, the achievement of good economic outcomes out of easy tasks

leaves the DM with the disposition of coping with difficulties from some point in time

on.6 In line with this finding it is worth mentioning the results of a program carried

out in West Bengal, by the indian microfinance institution Bandhan, consisting on

providing extremely poor individuals with productive assets. The authors observed

how people ended up working 28% more hours, mostly on activities not related to

the assets they were given and that their mental health had improved. The program

was considered to have injected a dose of motivation, that pushed people to start

new economic activities.7

Our proposal is closely related to the branch of literature that links poverty and

5In particular we assume that probabilities evolve according to a Markov process.
6That is consistent with (Ali, 2011), a model in which a long-run self, the planner, has to decide, at every point

in time, whether to allow the short-run self, the doer, to face a menu in which a tempting alternative is available.

The planner does so whenever the doer experiences high self-control.
7The full article is available at http://www.economist.com/node/21554506.
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psychology. For instance, (Dalton et al., 2014) discuss the importance of aspirations

failure in the perpetuation of poverty. This paper, as ours, highlights the role of

internal constraints as a source of behaviors that might preclude individuals from

getting high welfare achievements. Their research question is, however, different

from ours, whereas they focus in one particular bias, namely, aspiration failure, in

a static context, we analyze the role of non-cognitive abilities on dynamic decisions.

We also find relations with the literature of addiction and self-control. Specifically,

(Bernheim and Rangel, 2004) study patterns of addictive behavior of a DM that

operates in two modes, namely, cold and hot. When in the cold mode, the DM

selects her most preferred alternative whereas when in the hot mode, choices and

preferences may diverge because the DM losses cognitive control. This paper, in

contrast with ours, presents a theory of addiction. Finally, (Ozdenoren et al., 2012)

exhaustively account for the dynamics of self-control performance of a DM that has

to choose her optimal consumption path. We depart from their approach as long as

we focus on outcome achievement and motivation, and not on capacity exhaustion,

as the main driver of decisions.

The paper is organized as follows. Section 2 presents the baseline model, where

the probability of experiencing the full capacity state is time independent. In sec-

tion the probability of experiencing the full capacity state is sensitive to outcome

achievements. The dynamics of its evolution is therefore outlined. Section 4 con-

cludes. Section 5 contains the technical proofs.

2 A model on avoidance behavior

Let s1 and s2 denote the two states that the DM might experience. When expe-

riencing s2 the DM is in the full capacity state and enjoys high abilities. When

experiencing s1 the DM is in the deteriorated capacity state, meaning that she ex-

ecutes her abilities poorly. At every point in time, t ∈ Z+, she has a probability

q ∈ [0, 1] of experiencing s2. Thus, she experiences s1 with probability 1− q. Tasks

are of two types, easy or the difficulty level d1, and difficult or the difficulty level d2.

The likelihood of getting good economic outcomes is denoted pij , with i, j = 1, 2.

Subscript i refers to the DM’s state, that is, either s1 or s2, whereas subscript j refers

to the difficulty of the task, that is, either d1 or d2. Probabilities are as follows: first,

fixing difficulty, the likelihood of good economic outcomes increases with the DM’s

state. There is, in fact, a large amount of literature, see (Heckman et al., 2006)

and (Balart and Cabrales, 2014), posing non-cognitive abilities as one of the factors

determining performance and outcomes, for instance, in education and the labor

market. Second, fixing the DM’s state, the likelihood of good economic outcomes

decreases with task’s difficulty. The following table presents these probabilities:

Table 1. Success probabilities

4



s1 s2

d1 p11 < p21

< <

d2 p12 < p22

Notice that no direct relation is established between p11 and p22. Finally, good

economic outcomes are worth just 1 unit when they are the result of developing easy

tasks and K > 1 units when they come out of developing difficult tasks.

We make an assumption regarding the success probabilities. It captures the idea

that individuals with low dispositions are more vulnerable than individuals with

high dispositions to the characteristics of the tasks they deal with. For high disposi-

tion individuals, task’s difficulty is less relevant than for low disposition individuals

in determining their chances of success. On the domain of cognitive abilities (Gon-

zalez, 2005) provides experimental evidence on how increasing task difficulty, was

more detrimental for low ability individuals. We formally express it as:

Assumption 1: p11 − p12 > p21 − p22.

The second assumption is related to the strategies among which the DM chooses:

Assumption 2: once the DM decides to face difficulties, she commits to this

decision forever.

In fact, there exists evidence showing that in many situations individuals become

locked into (possibly) costly courses of action and a cycle of escalation of commit-

ment arises. The justification of previous decisions, the necessity to comply with

norms or a desire for decision consistency in the decision making process, might

encourage commitment.8 The strategies available to the DM therefore comprise

choosing the point in time in which to face difficulties. We denote by (∞) the

always avoiding difficulties strategy and by (0) the facing difficulties since the be-

ginning strategy. A strategy consisting on facing difficulties from a point in time

0 < t <∞ on, is denoted (t).9

The DM behaves as an expected utility maximizer. Thus, she determines her

optimal path of action at the initial point in time, taking into account her dispo-

sition, that is, the point-wise probability q of being in the full capacity state. We

consider that the DM is risk neutral. We then focus on the role of dispositions

without dealing with risk aversion issues.10 Thus, the current expected utility of

8See (Staw, 1981) for the concept of escalation of commitment. See also (Arkes and Blumer, 1985) and (Thaler,

1980) for a justification of this phenomenon based on the sunk cost effect.
9It is worth to stress how the explicit introduction of time does not aim to describe the evolution of abilities

along the life cycle. Time only aim to capture the point-wise choice of task difficulty.
10See (Tanaka et al., 2010) for a study on the relationship between poverty and risk and time preferences.

5



choosing an easy task at time t is qp21 + (1− q)p11 and that of choosing a difficult

one is K(qp22 + (1 − q)p12). Furthermore, let δ ∈ (0, 1) denote the discount factor

of the stream of pay-offs. We formally state the DM’s problem as follows:

When experiencing the full capacity state, s2, with probability q, the DM decides,

at t = 0, the point in time t to face difficult tasks, in order to maximize her long-run

expected utility. Specifically, she solves:

Max
t

u((t)) = Max
t

t−1∑
i=0

δi(qp21 + (1− q)p11) +K

∞∑
i=t

δi(qp22 + (1− q)p12).

As stated, the only decision the DM has to make is when to jump into difficulties.

The second part of the sum above reflects the fact that once she decides to do so,

she sticks at this decision forever.

2.1 Results

It seems intuitive that individuals who enjoy better dispositions tend to perform

tasks better. In fact, it is common that people tend to avoid difficulties when they

do not feel prepared to face them. The results in this section capture this idea.

When the DM experiences the full capacity state with high enough probability, she

will opt for difficulties since the beginning. In contrast, when the probability of

experiencing the full capacity state is low enough, she will prefer to avoid them

forever.

We get the results by building a function λ that depends on the success prob-

abilities and on outcomes. It defines a domination threshold between the strategy

of facing difficulties since the beginning, that is (0), and the strategy of postponing

them for one period, that is (1).11 For values of q higher or equal than this thresh-

old, (0) is preferred to (1) and for values of q smaller than it, (1) is preferred to (0).

This information will be enough to identify the optimal strategy.

Before stating the result it is worth highlighting that whenever outcomes out

of difficult tasks do (respectively do not) compensate the decrease in probability

of successfully dealing with them, that is, whenever p11/p12 ≤ K (respectively

K ≤ p21/p22), the DM finds optimal to always face (respectively to always avoid)

difficulties, even if she is of extreme low disposition, that is, if q = 0 (respectively,

even if she is of extreme high disposition, that is, if q = 1). We then focus on the

interesting case in which p21/p22 < K < p11/p12. Results are as follows:

Theorem 1. The DM’s optimal strategy is to face difficulties since the beginning

whenever she enjoys the full capacity state with high enough probability (that is,
11Specifically, it is the result of equating the long-run expected utility of (0) and one of (1), under all possible q.

It gives the us the q such that the DM will be indifferent between not postponing difficulties and doing so for one

period. Its value is λ =
Kp12 − p11

(p21 − p11) −K(p22 − p12)
. See the proof of Theorem 1.
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whenever λ ≤ q) and to always avoid them whenever she experiences the full capacity

state with low enough probability (that is, whenever q < λ).

Optimal paths of action are extreme behaviors. Facing difficulties from an inter-

mediate point in time is never optimal. Notice that, as going back from difficult to

easy tasks is never considered by the DM, assumption 2 is immaterial here. Notice

also that if for the DM never (respectively always) postponing difficulties is optimal,

this is also be the case for any DM with a higher (respectively lower) disposition.

The always avoiding difficulties strategy is interpreted as procrastination on onerous

tasks.12

The following example aims to clarify the elements of the model and the result:

Example. Consider a DM who is deciding which type of job to look for or

accept. An easy (routine) job gives the DM a payoff (wage) of 1 whereas a difficult

(high responsibility) job has payoff K = 1.3. Success probabilities in either job are:

s1 s2

d1 0.7 0.8

d2 0.5 0.7

In this case λ = 0.31. Thus if the DM is of low enough disposition (that is, if q <

0.31), she finds optimal to always postpone the acceptance of the high responsibility

job, whereas if she is of high enough disposition (that is, if q ≥ 0.31), she will

find optimal to deal with the high responsibility job since the beginning. We depict

below the ranking of long-run expected utilities under the strategies the DM chooses

among. The left figure illustrates the case in which always avoiding difficulties is

optimal whereas the right figure illustrates the case in which facing them since the

beginning is optimal:

Figure 1. The optimal strategy is (∞) Figure 2. The optimal strategy is (0)
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12See(O’Donoghue and Rabin, 2001) and(O’Donoghue and Rabin, 2008) for two references on procrastination.
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The following remark discusses how the threshold λ reacts to the primitives of

the model:

Remark. The threshold λ is decreasing in p22 and p12 and K and increasing in p21
and p11.

Higher chances of successfully developing either easy or difficult tasks make the

DM more prone to choose each of them. In the same vein, an increase in the value

of good economic outcomes out of difficult tasks incentivizes the DM to face them.

An increase in K directly raises the utility of facing difficult tasks. This happens

despite of the fact that the probability of achieving good economic outcomes in these

circumstances is systematically lower. The above result together and the remark are

summarized as follows:

Corollary. The range of probabilities [q, 1] such that the DM’s optimal strategy

is to face difficulties since the beginning increases (respectively decreases) with the

probability of success under difficult (respectively easy) tasks. It also increases with

the value of economic outcomes out of difficult tasks.

In what follow we present the utility associated to the aforementioned optimal

strategies. We also analyze the effect of a marginal boost in dispositions, by assum-

ing that a marginal increase in dispositions, does not affect the originally optimal

strategy. For this purpose let us denote α ≡ 1

1− δ
. Results are as follows:

Proposition 1. The long-run expected utility of any optimal strategy is monoton-

ically increasing and linear in q. Its value is αK(qp22 + (1 − q)p12) whenever the

DM finds optimal to face difficulties since the beginning and α(qp21 + (1 − q)p11)

whenever the DM finds optimal to always avoid difficulties. Moreover, the marginal

return of an increase in the DM’s disposition is higher when the DM is already of

high dispositions (that is, when q ≥ λ) than when she is of low dispositions (that is,

whenever q < λ).

We would like to finally discuss on the possibility of carrying out a welfare assess-

ment analysis. The intuition is as follows: consider two individuals. One of them,

the disadvantaged individual, has low abilities and always avoids difficulties, the

other, the advantaged individual, has high abilities and always faces difficulties. It

turns out that the marginal return of boosting abilities ishigher for the advantaged

individual than for the disadvantaged individual. Suppose that a social planner has

one unit of resources, devoted to improve abilities. If it is the case that the planner

only cares about maximizing total returns, he might allocate this unit on the advan-

taged individual. If he also has equity concerns, he will have to take into account

that the utility gap between the advantaged and the disadvantaged individual will

exacerbate. In this case, the planner might be willing to allocate resources on the

disadvantaged individual.
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3 The role of motivation

In this section we model how successes and failures might affect the manifestation

of non-cognitive abilities. In doing so, we assume that the probability of experienc-

ing the full capacity state varies over time according to a Markovian process. This

modeling aims to capture the idea that success may boost the manifestation of the

non-cognitive abilities while failure may deteriorate it. Formally, the probability of

experiencing the full capacity state at time t, depends on its value at time t−1, and

also on the success probabilities. Let q(t) ∈ [0, 1] denote the probability of experi-

encing the full capacity state.Thus, 1− q(t) denotes the probability of experiencing

the deteriorated capacity state at time t. Let the success probabilities be the ones

described in table 1 in the previous section. The following expression accounts for

the evolution of the probabilities of experiencing either state:

[q(t−1) 1− q(t−1)]
[
p2j 1− p2j
p1j 1− p1j

]
= [q(t) 1− q(t)], (1)

where j = {1, 2} accounts for task’s difficulty.13 Consider that at time t− 1 the

DM experiences s2 with probability q(t−1). Then, at time t she will experience s2
with the probability with which she was successful in the previous period. This is

captured by the first column in the matrix above. Similarly, at t she will experience

s1 with the probability with which she failed in the previous period. This is captured

by the second column the matrix above. Let q(0) be the DM’s initial probability of

experiencing the full capacity state. The current expected utility of developing an

easy task at time t is q(t)p21 + (1 − q(t))p11 and the one developing a difficult task

is K(q(t)p22 + (1− q(t))p12).
Notice that, as q(t) evolves according to a Markovian process, we can identify

two stationary probabilities. These are, the one related to always facing easy tasks,

denoted qe, and the one related to always facing difficult tasks, denoted qd. We

interpret them as the average long-run frequencies with which the DM experiences

the full capacity state when she always faces easy or difficult tasks, respectively.

Since the likelihood of success is higher in easy tasks, it is the case that the DM is

eventually better off in terms of capacities when she decides to only face easy tasks

than when she decides to only face difficult tasks, more formally, qe > qd.14 The

DM’s problem is as follows:

13Notice that q(t) depends on the chosen strategy. If the DM decides to face difficult tasks from t = 5 on, q(4) is

the resulting probability of having faced easy tasks for four periods. If she decides to face difficult tasks from t = 3

on, q(4) is the resulting probability of having faced easy tasks for two periods and difficult ones from the third one

on.
14Let Tk, with k = e, d, denote the transition matrices out of facing either easy or difficult tasks, involved in

expression (1), respectively. Their determinants are T e = p21 − p11 and T d = p22 − p12, respectively. In getting

qe and qd we solve [qk, 1 − qk]Tk = [qk, 1 − qk]. We have that qe = (p11)(1 − T e)−1 and qd = (p12)(1 − T d)−1.

Suppose that qe < qd. This implies that p11(1 − T d) < p12(1 − T e) or p11(1 − p22) < p12(1 − p21) which cannot

hold since p11 > p12 and (1 − p22) > (1 − p21). Thus qe > qd has to hold.
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When experiencing the full capacity state, s2, with probability q(0), she decides, at

t = 0, the point in time t, to face difficult tasks, in order to maximize her long-run

expected utility. Specifically, she solves:

Max
t

u((t)) = Max
t

t−1∑
i=0

δi(q(i)p21 + (1− q(i))p11) +K

∞∑
i=t

δi(q(i)p22 + (1− q(i))p12).

As stated, the only decision the DM has to make is when to jump into difficulties,

in an environment in which her current performance is sensitive to previous outcome

achievements. As before, the second part of the sum above reflects the fact that

once she decides to do so, she sticks at this decision forever.

3.1 Results

As in the previous section, we instrument our analysis using a function µ, depending

on the primitives of the model. It defines a domination threshold between the

strategy of facing difficulties since the beginning and the strategy of postponing

them for one period, that is, between (0) and (1). For values of q(0) higher or equal

than this threshold, (0) is preferred to (1) and for values of q(0) smaller than it,

(1) is preferred to (0). This threshold and the stationary probabilities, determine

optimal strategies. Let us first focus on the case in which assumption 2 does not

play a role, that is, when DM’s optimal strategy, in fact, belongs to the class of

strategies already prescribed this assumption. We comment on the remaining cases

afterwards. Results are as follows:

Theorem 2. The DM’s optimal strategy is to face difficulties since the beginning

whenever she always enjoys the full capacity state with high enough probability (that

is, whenever µ ≤ qd < qe, q(0)), to always avoid them whenever she always experi-

ences the full capacity state with low enough probability (that is, whenever q(0), qd <

qe ≤ µ) and to face them from an intermediate point in time whenever she gets

motivated through outcome achievements associated to easy tasks (that is, whenever

q(0) < µ ≤ qd < qe).

In contrast with previous results, jumping into difficult tasks at some point in

time can now be optimal. We interpret this strategy as one in which the DM prefers

to first deal with easy tasks, because performing properly motivates her to deal with

difficult but more rewarding tasks.

In the following figure we depict the ranking of utilities in this case. The DM

exhibits single-peaked preferences on the optimal time to face difficulties, with the

peak corresponding to an intermediate strategy:

Figure 3. The optimal strategy is (t)
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The question of when to do the hard stuff arised in Quora, an internet knowledge

market, in which people discuss about a specific given topic. The topic was: Is it

better to do easy tasks first and then move on to harder ones, or vice versa?15 One

of the answers, that accurately illustrates our statement, was:

Important is to evaluate, which are the harder tasks and which the easy tasks. Out

of this it becomes clear, how long it will take to do them. (...) The rest has more

psychological character and is strongly depending on the personality. I personally

like to mix it. This gives the success feeling, if you do the easy tasks and motivates,

to continue with the harder tasks, to make the overall project the success.

If individuals indeed behave this way, there will be chances of improving achieve-

ments by dealing with motivation. Also, a model of human capital accumulation in

which individuals build their skills by developing easy tasks up to the point that it is

optimal for them to face difficulties, might offer the same type of results. However

we truly think that the human capital accumulation story is essentially different

from the motivational story. This difference relies on the following reasoning: while

individuals build their human capital in the actual process of developing a task,

motivation results when outcomes are achieved. We think that this is a crucial

distinction, that might give different conclusions when deciding, for instance, the

path of task difficulties with which individuals should be confronted. There might

be a trade-off if easy task promote lower learning and high motivation due to more

frequent good outcomes, and the contrary happens with difficult tasks.

We now briefly comment on some cases in which assumption 2 plays a role. That

is, cases in which the DM has to choose the optimal strategy among the class of

strategies prescribed by assumption 2, regardless of whether other path of action

would have delivered higher utility. Under qd < qe < µ ≤ q(0) the DM would

15See http://www.quora.com/Is-it-better-to-do-easy-tasks-first-and-then-move-on-to-harder-ones-or-vice-versa.
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have preferred to switch to easy tasks after have been dealing with difficulties for

a while. Within the class of strategies she can choose among due to assumption

2, the DM exhibits single deep preferences on the optimal time to face difficulties.

The deep corresponds to an intermediate strategy and the peaks correspond to

the extreme strategies or either never dealing with difficulties or facing them since

the beginning. The same happens under qd < µ ≤ qe, q(0). Among the available

strategies prescribed by assumption 2, the DM ends up dealing with difficulties since

the beginning. Finally under q(0), qd ≤ µ < qe the DM would have also preferred

to switch to easy tasks after have been dealing with difficulties for a while. As a

result of assumption 2, the best thing the DM can do is to perform an intermediate

strategy.16

The following result deals with the properties of the utility under the three op-

timal strategies. It also describes the returns of a boost in the DM’s initial dispo-

sition, that is, q(0). We assume that a marginal increase in the initial disposition,

does not affect the originally optimal strategy. Specifically, for the case in which

an intermediate strategy is optimal we consider that marginal increase in the initial

disposition, does not affect the particular point in time to face difficulties. Formally,

when (t) is optimal then t|q(0) = t|q(0)+ε holds. Before stating the results let us

denote by mr((.)), the marginal return of a increase in the DM’s initial disposition.

Proposition 2 is as follows:

Proposition 2. The long-run expected utility is monotonically increasing and linear

in q(0) under any optimal strategy. Moreover, mr((0)) > mr((t − 1)) > mr((t)) >

mr((∞)).

These results, as the ones in Proposition 1, capture the idea that individuals

with better abilities perform better and achieve higher utility. It is also the case

that advantaged individuals, those with high q(0), benefit more from a marginal

increase in their abilities. As the table below illustrates, as q(0) increases within a

row, everything else equal, that is, as the DM is of higher initial dispositions, she

moves from finding (∞) or (t) optimal to (possibly) finding (0) optimal.

In the previous section we illustrated how the utility of high disposition individ-

uals that always confront difficulties was higher than the utility of low disposition

individuals that always avoid difficulties. We also carry such an analysis in this

framework. We list in the table below the three combinations in which µ, and

qe > qd and q(0) relates to each other and the optimal strategies in every situation.

Within each combination we consider that µ, qe and qd remain unaltered. However,

they might be different across combinations. For the ease of exposition we only

consider strict inequalities here:17

Table 2. Optimal strategies

16See the proof of Theorem 2 for a complete analysis.
17For a complete analysis, see the proof of Theorem 2
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C.1 q(0) < qd < qe < µ qd < q(0) < qe < µ qd < qe < q(0) < µ qd < qe < µ < q(0)

(∞) (∞) (∞) (0) or (∞)

C.2 q(0) < µ < qd < qe µ < q(0) < qd < qe µ < qd < q(0) < qe µ < qd < qe < q(0)

(t) (0) (0) (0)

C.3 q(0) < qd < µ < qe qd < q(0) < µ < qe qd < µ < q(0) < qe qd < µ < qe < q(0)

(t) (t) (0) (0)

Let us focus on optimal strategies in the row corresponding to C.2, that is, either

(t) or (0). In this case assumption 2 does not play a role. This allows us to make a

neat comparison of the utility gains under the optimal strategies. The result is as

follows:

Lemma 1. Consider a DM characterized by q(0). The optimal strategy of facing

difficulties since the beginning (that is, whenever µ < q(0), qd < qe) yields higher

utility than the optimal strategy of facing them from an intermediate point in time

(that is, whenever q(0) < µ < qd < qe).

Also, in order to make strategy (t) in C.2 and strategy (∞) in C.1 comparable,

we consider, for the latter, the specific situation in which q(0) < qd < qe < µ. Notice

that this is the only situation in C.1 in which q(0) < qd. Let q(0) be the same in

both scenarios and focus on the case in which the only difference between C.1 and

C.2 is that we increase µ, from C.2 to C.1, by decreasing K.18 Since qe and qd do

not depend on K, they remain unaltered. The result is as follows

Lemma 2. Consider a DM characterized by q(0). The optimal strategy of facing

difficulties from an intermediate point in time (that is, whenever q(0) < µ < qd < qe)

yields higher utility than the optimal strategy of always avoiding difficulties (that is,

whenever q(0) < qd < qe < µ).

With these two lemmas we conclude that optimal strategies involving the choice

of difficulties at some point in time, yield higher utility than optimal strategies in

which the DM always avoids difficulties.

4 Conclusions

Non-cognitive abilities have an impact in determining performance in dimensions

of huge economic relevance, as labor market entry/ search decisions or educational

attainments. We link, in a dynamic setting, non-cognitive abilities to the decision of

when to deal with difficult but valuable tasks. We show how low disposition indi-

viduals always avoid difficulties and forego better economic opportunities while high

disposition individuals are willing to deal with difficulties. The behavior of individ-

uals that always avoid dealing with onerous tasks resembles procrastination results,
18See the proof of Theorem 2, step 1.
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without relying on the hyperbolic discounting assumption.19 Also, individuals that

get motivated by outcome achievements find optimal to jump into difficult tasks at

some point in time.

5 Appendix. Proofs

Before proceeding we set some useful definitions. Let us denote by u1,(0) and u2,(0),

the DM’s long-run expected utility when she only experiences the deteriorated ca-

pacity state s1, that is when q = 0, and when she only experiences the full capacity

state s2, that is when q = 1, respectively, under strategy (0). Similarly, let us denote

by u1,(1) and u2,(1), the DM’s long-run expected utility when she only experiences

the deteriorated capacity state s1, that is when q = 0, and when she only experiences

the full capacity state s2, that is when q = 1, respectively, under strategy (1).

Let us define functions f : R→ R and g : R→ R as f(λ) = λu2,(1)+(1−λ)u1,(1)

and g(λ) = λu2,(0) +(1−λ)u1,(0), respectively. For λ ∈ [0, 1], these functions are the

convex combination of the DM’s long-run expected utilities, when she experiences

s2 with probability q = 1 and q = 0, out of strategies (1) and (0), respectively.

Furthermore, we say that a strategy (t) dominates strategy (t + 1) whenever the

long-run expected utility of (t) is higher than the one of (t + 1). Let (t) > (t + 1)

denote this domination relationship. Recall that (t) denotes any strategy such that

0 < t < ∞. We also say that strategy (0) dominates strategy (1) whenever the

long-run expected utility of (0) is higher than the one of (1). Let (0) > (1) denote

this domination relationship.

Proof of Theorem 1. The proof is composed by two steps. In Step 1 we derive the

threshold λ such f(λ) and g(λ) equalize. For such a λ, (1) and (0) yield the same

long-run expected utility. For values higher or equal than λ then (0) > (1). For

values lower than λ then (1) > (0). In step 2 we argue how this information is

enough to set the optimal strategy, depending on the values of λ and q.

Step 1. If the DM experiences s2 with probability q = 1, the long-run expected

utility of strategy (0) is u2,(0) = Kp22+δu2,(0). If she experiences s1 with probability

1 − q = 1, the long-run expected utility of strategy (0) is u1,(0) = Kp12 + δu1,(0).

Similarly, when she experiences s2 with probability q = 1, the long-run expected

utility of strategy (1) is u2,(1) = p21 + δu2,(0) whereas when she experiences s1
with probability 1 − q = 1, then u1,(1) = p11 + δu1,(0). From previous definitions,

f(λ) = λ(u2,(1) − u1,(1)) + u1,(1) and g(λ) = λ(u2,(0) − u1,(0)) + u1,(0). Solving

f(λ) = g(λ) for λ we get λ((u2,(1)−u1,(1))− (u2,(0)−u1,(0))) = u1,(0)−u1,(1). Notice

that u2,(0)−u1,(0) = K(p22−p12)(1−δ)−1 and u1,(0) = Kp12(1−δ)−1. Thus, λ((p21−
p11)−K(p22−p12)) = Kp12−p11 or λ = (Kp12−p11)((p21−p11)−K(p22−p12))−1.
Assumption 1 implies that p22−p12 > p21−p11, thus the denominator of the previous

19See (Rubinstein, 2003) for a discussion on this assumption.
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is different from zero, and λ exists. Also the denominator is negative and for values

lower (respectively higher) than λ then (1) > (0) (respectively (0) > (1)). For

values equal to λ we assume that (0) > (1) as well. Assumption 1 also implies that

p11/p12 > p21/p22.
20 Thus, ∂λ/∂K =

p21p12 − p22p11
((p21 − p11)−K(p22 − p12))2

< 0. Notice

than when K = p21/p22 then λ = 1 and when K = p11/p12 then λ = 0. It then

follows that when K < p21/p22 then λ > 1, and no matter q, (1) > (0). On the

contrary, when K > p11/p12 then λ < 0, and no matter q, (0) > (1). We focus

on the interesting case such that p21/p22 < K < p11/p12 and λ ∈ (0, 1). We thus

conclude that when q ≥ λ then (0) > (1) and when q < λ then (1) > (0).

Step 2. We set here the optimal strategies. Two cases arise depending on the

relation between q and λ:

C.1. Suppose that q ≥ λ. By step 1, (0) > (1). Let us compare any pair of

intermediate strategies (t) and (t + 1). We have that u((t)) =
∑t−1

i=0 δ
i(qp21 + (1−

q)p11) +K
∑∞

i=t δ
i(qp22 + (1− q)p12) and u((t+ 1)) =

∑t−1
i=0 δ

i(qp21 + (1− q)p11) +

δt(qp21 +(1−q)p11)+K
∑∞

i=t+1 δ
i(qp22 +(1−q)p12). Notice that up to the point in

time t−1, (t) and (t+ 1) yield the same utility. Notice also that from time t on, the

comparison is between (0) and (1), evaluated from the point of view of time t. Since

it is always the case that q ≥ λ, it follows that (0) > (1), from the point of view of

time t. That is so because we can consider the process as starting at time t and thus,

apply step 1. As a consequence, for any pair of intermediate strategies, (t) and (t+1),

it follows that (t) > (t+1). It is useful to observe that limi−→∞ u((t+ i)) = u((∞)).

We then conclude that (0) > (1) > ... > (t) > (t+ 1) > ... > (∞) holds. In this case

(0) is optimal.

C.2. Suppose that q < λ. To conclude that (0) < (1) < ... < (t) < (t+1) < ... <

(∞) we use a similar reasoning as above and thus omit it here. In this case (∞) is

optimal.

�

Proof of the Remark. See the proof of Theorem 1 for the expression of λ and its

relation with K. We analyze here how λ varies with the probabilities of success. Let

x ≡ (p21− p11−K(p22− p12))2 be the denominator in the following derivatives. We

have that: ∂λ/∂p11 = (Kp22 − p21)x−1, ∂λ/∂p12 = K(p21 −Kp22)x−1, ∂λ/∂p21 =

(p11 − Kp12)x−1 and ∂λ/∂p22 = K(Kp12 − p11)x−1. Since K ∈ (p21/p22, p11/p12)

then ∂λ/∂pi1 > 0 and ∂λ/∂pi2 < 0 with i = 1, 2.

�

Proof of Proposition 1. Recall that u((0)) = K
∑∞

i=0 δ
i(qp22+(1−q)p12) = (K(qp22+

(1 − q)p12)(1 − δ)−1 and u((∞)) =
∑∞

i=0 δ
i(qp21 + (1 − q)p11) = (qp21 + (1 −

q)p11)(1− δ)−1. Since ∂u((0))/∂q = K(p22 − p12)(1− δ)−1 > 0 and ∂u((∞))/∂q =

(p21− p11)(1− δ)−1 > 0, utilities are increasing and linear in q. Finally, assumption

20By assumption 1, p11−p12 > p21−p22. It implies that (p11−p12)(p12)−1 > (p21−p22)(p22)−1 or equivalently

p11/p12 > p21/p22.
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1 implies that p22 − p12 > p21 − p11, then the marginal return of an increase in q is

the highest under (0). �

Before the proof of Theorem 2 let us set two useful claims:

Claim 1. Consider that the DM repeatedly faces easy tasks. Then, at every time t,

q(0) > q(t) > q(t+1) > qe whenever q(0) > qe and q(0) < q(t) < q(t+1) < qe whenever

q(0) < qe.

Proof of Claim 1. The proof is by induction. Let us focus on the case in which

q(0) > qe. We first prove that for t = 1, q(0) > q(1) > qe holds. We set the induction

part afterwards.

Step 1. q(0) > q(1) > qe. In showing that q(0) > q(1), we compare the initial

probability of experiencing s2, with its first perturbation, after having decided to

face an easy task. Consider expression (1) in the main body:

[q(0) 1− q(0)]
[
p21 1− p21
p11 1− p11

]
= [q(1) 1− q(1)].

We have that q(1) = q(0)p21+(1−q(0))p11. Recall that q(0) > qe and qe = p11(1−
p21+p11)

−1. Thus, q(0) > p11(1−p21+p11)
−1 or equivalently q(0)(1−p21+p11) > p11.

We rewrite this expression as q(0) > q(0)p21+(1−q(0))p11. The RHS of this expression

is exactly q(1). In showing that q(1) > qe we proceed by contradiction. Suppose

that q(1) < qe holds, that is, q(0)p21 + (1 − q(0))p11 < qe. This is equivalent to

q(0)p21+(1−q(0))p11 < p11(1−p21+p11)−1 or (p11+q
(0)(p21−p11))(1−p21+p11) < p11.

Rearranging terms it becomes p11−p11(p21−p11)+q(0)(p21−p11)(1−p21+p11) < p11.

This is equivalent to q(0) < p11(1 − p21 + p11)
−1 = qe, contradicting our initial

assumption. Thus, q(0) > q(1) > qe holds.

Step 2. If for an arbitrary t, q(t) > q(t+1) > qe holds, for q(t+1) we have:

[
q(t+1) 1− q(t+1)

] [p21 1− p21
p11 1− p11

]
= [q(t+2) 1− q(t+2)].

In concluding that q(t+1) > q(t+2) > qe we use exactly the same reasoning than in

the previous step. We conclude that q(0) > q(t) > q(t+1) > ... > qe holds. The case

in which q(0) < qe relies on the same argument. The same analysis goes through for

describing the relation between q(t) and qd. We thus omit the proofs here. �

Claim 2. q(i) = q(0)(T k)i + p1k
∑i−1

j=0(T
k)j and q(t+i) = q(t)(T k)i + p1k

∑i−1
j=0(T

k)j

with k = e, d.

Proof of Claim 2. Recall that T d = p22 − p12 and T e = p21 − p11. By expression

(1) in the main body, q1 = q(0)T k + p1k. Also q2 = q(1)T k + p1k = (q(0)T k +

p1k)T
k + p1k = q(0)(T k)2 + p1kT

k + p1k. In general q(i) = q(0)(T k)i + p1k(T
k)i−1 +

... + p1kT
k + p1k or q(i) = q(0)(T k)i + p11

∑t−1
j=0(T

k)j . To conclude that q(t+i) =

q(t)(T k)i + p1k
∑i−1

j=0(T
k)j we follow a similar reasoning. We thus omit it here. �
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Proof of Theorem 2. We follow the same steps than in the proof of Theorem 1.

Step 1. Consider expression (1) in the main body. When the DM experi-

ences s2 with probability q(0) = 1, the long-run expected utility out of strat-

egy (0) is u2,(0) = Kp22 + δ(p22u
2,(0) + (1 − p22)u

1,(0)). When she experiences

s1 with probability 1 − q(0) = 1, the long-run expected utility of strategy (0) is

u1,(0) = Kp12 + δ(p12u
2,(0) + (1 − p12)u

1,(0)). Solving for u1,(0) and u2,(0) we get

u2,(0) =
K(p22 − δT d)

(1− δ)(1− δT d)
and that u1,(0) =

Kp12
(1− δ)(1− δT d)

. Thus, u2,(0)−u1,(0) =

KT d

1− δT d
. When she experiences s2 with probability q(0) = 1, the long-run expected

utility out of strategy (1) is u2,(1) = p21 + δ(p21u
2,(0) + (1 − p21)u1,(0)). Similarly,

when she experiences s1, with probability 1− q(0) = 1, the long-run expected utility

out of strategy (1) can is u1,(1) = p11 + δ(p11u
2,(0) + (1 − p11)u1,(0)). Now, f(µ) =

µ(u2,(1)−u1,(1)) +u1,(1) and g(µ) = µ(u2,(0)−u1,(0)) +u1,(0) Solving for µ such that

f(µ) = g(µ) we get µ =
u1,(0) − u1,(1)

(u2,(1) − u1,(1))− (u2,(0) − u1,(0))
. With respect to the nu-

merator, u1,(0)−u1,(1) = (1−δ)u1,(0)−p11−δp11(u2,(0)−u1,(0)) or equivalently u1,(0)−

u1,(1) =
(1− δ)Kp12

(1− δ)(1− δT d)
− p11 −

δp11KT
d

1− δT d
=
K(p12 − δp11T d)− (p11 − δp11T d)

1− δT d
.

Regarding the denominator, u2,(1) − u1,(1) = T e + δT e(u2,(0) − u1,(0)) and u2,(1) −
u1,(1) − (u2,(0) − u1,(0)) = T e − (1 − δT e)(u2,(0) − u1,(0)). This is equivalent to
T e(1− δT d)−KT d(1− δT e)

(1− δT d)
. Thus, µ =

K(p12 − δp11T d)− (p11 − δp11T d)
T e(1− δT d)−KT d(1− δT e)

.21 Since

by assumption 1, T d > T e the denominator is different from zero, hence µ is

a real number. Since by assumption 1, the denominator is negative, for values

lower than µ then (1) > (0) and for values higher than it, (0) > (1). For values

equal to µ we assume that (0) > (1) as well. Also by assumption 1, ∂µ/∂K =
(1− δT d)(p21p12 − p11p22)

(T e(1− δT d)−KT d(1− δT e))2
< 0. Furthermore, when K =

p11 − δp11T d

p12 − δp11T d
then

µ = 0 and whenK =
p21 − δp21T d

p22 − δp21T d
then µ = 1. Thus, it has to be that

p21 − δp21T d

p22 − δp21T d
<

p11 − δp11T d

p12 − δp11T d
.22 It also has to be that when K >

p11 − δp11T d

p12 − δp11T d
then µ < 0.

In this case no matter q(0), (0) > (1). In contrast, when K <
p21 − δp21T d

p22 − δp21T d
,

then µ > 1 and no matter q(0), (1) > (0). The interesting case is such that

K ∈
(
p21 − δp21T d

p22 − δp21T d
,
p11 − δp11T d

p12 − p11δT d

)
and µ ∈ (0, 1). We conclude that when q(0) ≥ µ

21When the DM does not care about the future, that is, when δ = 0, λ = µ. That q does not vary over time is

conceptually equivalent to think about a DM making one period decisions without consequences on her subsequent

states. Additionally, ∂µ/∂δ = K(K − 1)(p11p22 − p21p22) > 0, meaning that the more the DM cares about the

future the more she postpones difficult tasks, where good outcomes are less frequent.
22Notice that since we analyze the case in which K is equal to either part of the inequality, they have to be

positive. In fact the LHS is always positive and higher than 1. However the RHS might be negative due to the

denominator, in this case it is immaterial as an upper bound.
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then (0) > (1) and when q(0) < µ then (1) > (0).

Step 2. We set here the optimal strategies. Consider first, that µ ≤ q(0). By step

1, (0) > (1) from the point of view of q(0). Three cases arise:

C.1. Suppose that µ ≤ qd < qe, q(0). Let us compare any pair of intermediate

strategies, (t) and (t+ 1). We thus evaluate u((t)) =
∑t−1

i=0(q(i)p21 + (1− q(i))p11) +

K
∑∞

i=t δ
i(q(i)p22 + (1− q(i))p12) versus u((t+ 1)) =

∑t−1
i=0(q(i)p21 + (1− q(i))p11) +

δt(q(t)p21 + (1 − q(t))p11) + K
∑∞

i=t+1 δ
i(q(i)p22 + (1 − q(i))p12). Notice that up to

time t− 1, both expressions yield the same utility. From time t on, the comparison

is between (0) and (1), from the point of view of q(t). Notice that for any strategy

(t), q(t) results from have been dealing with easy tasks up to time t − 1. Thus, by

Claim 1, q(t) > µ. This implies that, from the point of view of q(t), (0) > (1). That

is so because we can consider the process as starting at time t, and thus apply step

1. As a consequence, for any pair of intermediate strategies (t) and (t+1), it follows

that (t) > (t + 1). Recall that limi−→∞ u((t + i)) = u((∞)).23 We thus establish

that (0) > (1)... > (t) > (t+ 1) > ... > (∞). Then (0) is optimal.

Assumption 2 does not play any role in C.1, that is, the DM’s optimal strategy

is within the class of strategies that it prescribes. However, it does in C.2 and C.3

below. In both cases the DM would have found optimal to start with difficult tasks

and to switch to easy ones at some point in time. We look for the optimal strategies

within the ones prescribed by assumption 2.

C.2. Suppose that qd < µ ≤ qe, q(0). Let us compare (t) and (t + 1), as above.

We then evaluate u((t)) and u((t + 1)) as defined in C.1. The relevant comparison

is between (0) and (1) from the point of view of q(t). Notice that q(t) results from

dealing with easy tasks up to time t− 1. Thus, by Claim 1, q(t) ≥ µ. Then, by step

1, from the point of view of q(t), (0) > (1) and, as a consequence, (t) > (t+ 1). We

thus establish that (0) > (1) > ... > (t) > (t+ 1) > ... > (∞), being (0) optimal.

C.3. Suppose that qd < qe < µ ≤ q(0). Let us compare (t) and (t+ 1) as above.

We then evaluate u((t)) and u((t+1)) as defined in C.1. The relevant comparison is

between (0) and (1) from the point of view of q(t). Suppose that strategy (t) is such

that q(t) > µ. Again, from the point of view of q(t), (0) > (1). As a consequence,

(t) > (t+ 1). Suppose that strategy (t∗ − 1) is such that q(t
∗−1) = µ.24 Notice that

t < t∗ − 1, by Claim 1 and, at least, t∗ − 1 = t + 1. Thus, from the point of view

of q(t
∗−1), (0) > (1). As a consequence, (t∗ − 1) > (t∗). Suppose that strategy (t) is

such that q(t) < µ for the first time. By Claim 1, this point in time has to be exactly

t∗. Thus, from the point of view of q(t
∗), (1) > (0). As a consequence (t∗+1) > (t∗).

Suppose that strategy (t) is any is such that q(t) < µ. Notice that t∗ < t, by Claim

1 and, at least, t = t∗ + 1. Thus, from the point of view of q(t), (1) > (0). As a

consequence, (t) < (t+ 1), in particular, (t∗+ 1) < (t∗+ 2). In general we have that

(0) > (1) > ... > (t∗ − 1) > (t∗) < (t∗ + 1) < (t∗ + 2) < ... < (∞). An intermediate

23This observation applies to the remaining cases. We omit it in what follows.
24The same analysis follows if we consider that q(t

∗−1) < µ.
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strategy (t) is then the least preferred and the optimal is either (0) or (∞).

Consider now that q(0) < µ. By step 1, (1) > (0) from the point of view of q(0).

Three cases arise. As we use parallel arguments than above, we go briefly over them.

We compare u((t)) and u((t + 1)) in every case. The relevant comparison will be

between (0) and (1), from the point of view of q(t):

C.1. Suppose that q(0), qd < qe ≤ µ. Notice that for any strategy (t), q(t) results

from have been dealing with easy tasks up to time t−1. Thus, by Claim 1, q(t) < µ.

Thus by step 1, (1) > (0) from the point of view of q(t). As a consequence, for any

pair of strategies, (t + 1) > (t). Thus, (0) < (1) < ... < (t) < (t + 1) < ... < (∞)

and the optimal strategy is (∞).

C.2. Suppose that q(0) < µ ≤ qd < qe. Suppose that strategy (t) is such

that q(t) < µ. Thus, from the point of view of q(t), (1) > (0). As a consequence,

(t + 1) > (t). Suppose that strategy (t∗) is such that q(t
∗) = µ. Notice that

t < t∗, by Claim 1 and, at least, t∗ = t + 1. Thus, from the point of view of

q(t
∗), (0) > (1). As a consequence, (t∗) > (t∗ + 1). Suppose that strategy (t) is

such that q(t) > µ for the first time. By Claim 1, this point in time has to be

exactly t∗ + 1. Thus, from the point of view of q(t
∗+1), (0) > (1). As a consequence

(t∗ + 1) > (t∗ + 2). Suppose that strategy (t) is any other such that q(t) > µ.

Notice that t∗ + 1 < t, by Claim 1 and, at least, t = t∗ + 2. Thus, from the point

of view of q(t), (0) > (1). As a consequence (t) > (t + 1). We thus have that,

(0) < (1) < ... < (t∗ − 1) < (t∗) > (t∗ + 1) > (t∗ + 2) > ... > (∞). Then, (t) is

optimal.

Assumption 2 does not play a role in C.1 and C.2. However, it does in the last

case. In it, the DM would have preferred to switch from difficult to easy tasks

at some point. We look for the optimal strategies within the ones prescribed by

assumption 2.

C.3. Suppose that q(0), qd ≤ µ < qe. Suppose that strategy (t) is such that q(t) <

µ. Thus, from the point of view of q(t), (1) > (0). As a consequence, (t + 1) > (t).

Suppose that strategy (t∗) is such that q(t
∗) = µ. Notice that t < t∗, by Claim 1 and,

at least, t∗ = t+1. Thus, from the point of view of q(t
∗), (0) > (1). As a consequence,

(t∗) > (t∗+1). Suppose that strategy (t) is such that q(t) > µ for the first time. This

point in time is exactly t∗ + 1. Thus, from the point of view of q(t
∗+1), (0) > (1).

As a consequence (t∗+ 1) > (t∗+ 2). Suppose that strategy (t) is any strategy such

that q(t) > µ. Notice that t∗ + 1 < t, by Claim 1 and, at least, t = t∗ + 2. Thus,

from the point of view of q(t), (0) > (1). As a consequence, (t) > (t+ 1). Summing

up we have that (0) < (1) < ... < (t∗ − 1) < (t∗) > (t∗ + 1) > (t∗ + 2) > ... > (∞).

Then, (t) is optimal.

�

Proof of Proposition 2. We have three cases depending on the optimal strategy:

C.1.(0) is optimal. We have that u((0)) = K
∑∞

i=0 δ
i(q(i)p22 + (1 − q(i))p12).
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By Claim 2, q(i) = q(0)(T d)i + p12
∑i−1

j=0(T
d)j . Plugging q(i) in the previous ex-

pression we have that u((0)) = K
∑∞

i=0 δ
i(q(i)T d + p12) or KT dq(0)

∑∞
i=0(δT

d)i +

p12T
dK
∑∞

i=0 δ
i
∑i−1

j=0(T
d)j+Kp12

∑∞
i=0 δ

i. Then ∂u((0))/∂q(0) = KT d(1−δT d)−1 >
0.

C.2. (∞) is optimal. We have that u((∞)) =
∑∞

i=0 δ
i(q(i)p21 + (1 − q(i))p11).

We follow exactly the same reasoning than in C.1, and thus omit it here. In this

case ∂u((∞))/∂q(0) = T e(1− δT e)−1 > 0.

In both cases utility is increasing and linear in q(0). Since T d > T e, the marginal

return of an increase in q(0) is higher under (0) than under (∞).

C.3. (t) is optimal. We have that u((t)) =
∑t−1

i=0 δ
i(q(i)p21 + (1 − q(i))p11) +

K
∑∞

i=t δ
i(q(i)p22+(1−q(i))p12). Let us focus first on the first part of the expression,

that is,
∑t−1

i=0 δ
i(q(i)p21+(1−q(i))p11). By Claim 2, q(i) = q(0)(T e)i+p11

∑i−1
j=0(T

e)j .

Thus,
∑t−1

i=0 δ
i(q(i)T e+p11) =

∑t−1
i=0 δ

i((q(0)(T e)i+p11
∑i−1

j=0(T
e)j)T e+p11). This ex-

pression is equivalent to q(0)T e
∑t−1

i=0 δ
i(T e)i+T e

∑t−1
i=0 δ

ip11
∑i−1

j=0(T
e)j+

∑t−1
i=0 δ

ip11.

Its derivative with respect to q(0) is T e
∑t−1

i=0(δT e)i > 0. Consider now the second

part, that is, K
∑∞

i=t δ
i(q(i)p22 + (1 − q(i))p12). By Claim 2, q(t+i) = q(t)(T d)i +

p12
∑i−1

j=0(T
d)j . Thus, we rewrite the previous expression asK(

∑∞
i=0 δ

t+i((q(t)(T d)i+

p12
∑i−1

j=0(T
d)j)T d+p12)). This is equivalently rewritten asK(q(t)T d

∑∞
i=0 δ

t+i(T d)i+

T d
∑∞

i=0 δ
t+ip12

∑∞
j=0(T

d)j +
∑∞

i=0 δ
t+ip12)). By Claim 2 we express the part de-

pending on q(t) as (q(0)(T d)t + p12
∑t−1

i=0(T d)i)KδtT d(1 − δT d)−1. Taking deriva-

tives w.r.t q(0) we get Kδt(T d)t+1(1 − δT d)−1 > 0. Summing up, we have that

∂u((t))/∂q(0) = T e
∑t−1

i=0(δT e)i +Kδt((T d)t+1)(1− δT d)−1 > 0.

We now compare the return of a marginal increase in q(0), in the aforementioned

strategies. Notice that u((0)) = K(
∑t−1

i=0 δ
i(q(i)T d+p12)+

∑∞
i=t δ

i(q(i)T d+p12)) and

u((∞)) =
∑t−1

i=0 δ
i(q(i)T e + p11) +

∑∞
i=t δ

i(q(i)T e + p11). We use similar algebra as

above to conclude that ∂u((0))/∂q(0) = KT d
∑t−1

i=0(δT d)i +Kδt(T d)t+1(1− δT d)−1

and ∂u((∞))/∂q(0) = T e
∑t−1

i=0(δT e)i+δt(T e)t+1(1−δT e)−1 Since T d > T e, we have

that ∂u((0))/∂q(0) > ∂u((t))/∂q(0) and ∂u((t))/∂q(0) > ∂u((∞))/∂q(0). We also

compare the marginal return of any pair of intermediate strategies (t−1) and (t). In

this case t−1 ≥ 1. We have that ∂u((t−1))/∂q(0) = T e
∑t−2

i=0(δT e)i+Kδt−1(T d)t(1−
δT d)−1 and ∂u((t))/∂q(0) = T e

∑t−1
i=0(δT e)i + Kδt(T d)t+1(1 − δT d)−1. The latter

expression minus the former yields δt−1(K(T d)t − (T e)t) > 0, since T d > T e. �

Proof of Lemma 1. Consider C.2 in table 2 in the main body. Let us denote by

q(0)
′

the initial probability in any of the cases in which (0) is optimal. Let us also

denote by q(0) the initial probability in the case in which (t) is optimal. Notice

that q(0)
′
> q(0). Consider the utility of (t) when the DM is characterized by q(0)

′
,

that is, when (0) is optimal. Notice that the utility of (t) is higher when the DM

is characterized by q(0)
′

than when she is characterized by q(0) and precisely (t)

is optimal. To see this, notice that up to t − 1 the DM faces easy tasks. Since
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q(0)
′
> q(0), by Claim 2, q(i)

′
> q(i) at every i ≤ t − 1. Consider now points in

time i ≥ t. By Claim 1, q(i) approaches qd from below without exceeding it. Also,

q(i)
′

may approach qd from below or above, without exceeding it.25 When q(i)
′

approaches qd from below, by Claim 2, q(i)
′
> q(i). When q(i)

′
approaches qd from

above by Claim 1, q(i)
′
> qd > q(i). Since current expected utility at every time t,

that is, K(q(t)p22 + (1− q(t)p12), is increasing q(t), it has to be that u((t)) is higher

under q(0)
′

than under q(0). Also, under q(0)
′
, u((0)) > u((t)) by optimality. We

thus conclude that the optimal strategy (0) yields higher utility than the optimal

strategy (t).

�

Proof of Lemma 2. Consider that the DM is characterized by q(0). By the proof of

Theorem 2, under q(0) < qd < qe < µ′, (∞) is optimal whereas under q(0) < µ <

qd < qe, (t) is optimal. Recall that µ is decreasing in K, thus µ < µ′ is associated to

K > K ′. By optimality of (t) we have that
∑t−1

i=0 δ
i(q(i)T e+p11)+K

∑∞
i=t δ

i(q(i)T d+

p12) >
∑t−1

i=0 δ
i(q(i)T e + p11) +

∑∞
i=t δ

i(q(i)T e + p11). Since we consider the case in

which q(0) as well as probabilities of success affecting qd and qe are the same, the

RHS of this expression brings exactly the same utility that when q(0) < qd < qe < µ′,

and hence (∞) is optimal. Thus, u((t)) under q(0) < µ < qd < qe is higher than

u((∞)) under q(0) < qd < qe < µ′.

�
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