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Abstract. In locally complete spaces with the sMc every unbounded closed
convex set C with the quasi drop property has the Mackey (�)-property. In
the frame of re�exive acyclic (LF )-spaces a quasi converse is obtained.

1. Introduction

Let (X; k�k) be a Banach space and BX its closed unit ball. By the dropD(x;BX)
de�ned by an element x 2 X n BX we mean the set conv (fxg [BX). Danes [2]
proved that, for any Banach space (X; k�k) and every non-empty closed set A � X at
positive distance from BX , there exists an x0 2 A such that D(x0; BX)\A = fx0g.
Motivated by Danes theorem, Rolewicz [26] introduced the notion of drop property
for the norm of a Banach space: the norm k�k in X has the drop property if for
every non-empty closed set A disjoint from BX there exists x0 2 A such that
D(x0; BX) \ A = fx0g. He proved that if the norm has the drop property then
(X; k�k) is re�exive (see [26] Theorem 5). Later, Montesinos (see [18] Theorem 4)
proved that a Banach space is re�exive if and only if it can be renormed to have
the drop property.
Let B be a subset of a Banach space (X; k�k). The Kuratowski index of noncom-

pactness of B, �(B), is the in�mum of all positive numbers r such that B can be
covered by a �nite number of sets of diameter less than r. Given f 2 X� such that
kfk = 1 and 0 < � � 2, consider the slice S(f;BX ; �) = fx 2 BX : f(x) � 1� �g.
The norm k�k in a Banach space X has property (�), if lim

�!0
�(S(f;BX ; �)) = 0

for every f 2 X�, with kfk = 1. Also, Rolewicz ([26] Theorem 4), proved that
if the norm has the drop property then it has property (�), and Montesinos ([18]
Theorem 3) established that these two properties are equivalent.
Giles, Sims and Yorke [7] said that the norm has the weak drop property if for

every non-empty weakly sequentially closed set A disjoint from BX , there exists
an x0 2 A such that D(x0; BX) \ A = fx0g, and they proved that this property is
equivalent to (X; k�k) being re�exive. Kutzarova [12] and Giles and Kutzarova [6]
extended the discussion of these drop properties to closed bounded convex sets in
Banach spaces. Cheng, Zhou and Zang [1], Zheng [30] and other authors studied
those drop properties in locally convex spaces: a bounded, convex and closed subset
B of a locally convex space (E; �) is said to have the drop property if it is non-
empty and for every non-empty sequentially closed subset A � E disjoint from B
there exists a 2 A such that D(a;B) \A = fag.
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Qiu in [22] and Monterde and Montesinos in [16], introduced another drop prop-
erties in locally convex spaces: a non-empty closed convex bounded subset B of a
locally convex space (E; �) is said to have the quasi weak drop (resp. quasi drop)
property if for every non-empty weakly closed (resp. closed) subset A � E disjoint
from B, there exists an x0 2 A such that D(x0; B)\A = fx0g. In [22] and [23], Qiu
established a number of equivalences for the quasi weak drop property in Frèchet
spaces and in quasi-complete locally convex spaces. He characterized re�exivity of
those spaces by the condition that every closed bounded convex subset of the space
must satisfy the quasi weak drop property. Concerning drop properties and their
applications, see for example [1]-[7], [12]-[19], [21]-[26], [29] and [30]. In [15] can be
found a extensive compilation of extensions and equivalent variational principles to
drop properties.
In [13], Kutzarova and Rolewicz have dropped the boundedness assumption for

the drop property in Banach spaces and proved

Theorem 1. Let C be an unbounded closed convex set in a re�exive Banach space.
The following conditions are equivalent:
i) C has the drop property;
ii) int(C) 6= ; and C has the property (�)

They asked if the existence of such a closed convex unbounded set C with the
drop property forces the space to be re�exive. In [19], Montesinos proved that this
is the case. Later, in [14], Lin and Yu proved that if C is an unbounded closed
convex set with the weak drop property in a Banach space, then C has nonempty
interior and the Banach spece is re�exive.
In [4], the author considered locally convex spaces with the strict Mackey con-

vergence condition (sMc, see below) and studied the relation between the quasi
drop property and the de�ned Mackey (�)-property (see below). Then he char-
acterized quasi drop property for bounded disks in Frechet spaces. Later, in [5]
on the base of techniques from Kutzarova-Rolewicz [13], Montesinos [19] and Lin-
Yu [14] the Kutzarova-Rolewicz�s Theorem was extended to the family of re�exive
Fréchet spaces, i.e. in a re�exive Fréchet space an unbounded closed convex subset
C has the quasi drop property if and only if int(C) 6= ; and C has the Mackey
(�)-property.
Recently, Monterde and Montesinos [17] proved that if a closed convex bounded

subset B of a locally convex space has the quasi drop property then it has prop-
erty (�). And if the locally convex space is complete, property (�) implies weak
compactness.
Based again on results and techniques of [13],[14] and [19], in this note is proved

that in a locally complete locally convex space (E; �) with the sMc every closed
convex unbounded subset B � E satisfying the quasi drop property has the Mackey
(�)-property. Also it is proved that subsets of acyclic (LF )-spaces (E; �) = ind(En; �n)
have both quasi drop, Mackey (�)-properties and non empty interior if there are
certain subsets satisfying them in every step (En; �n). Wich is a kind of converse
to the previous result or an extension to Kutzarova-Rolewicz theorem.
For the sake of completeness some results appeared in [5] are included in this

work.
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2. PRELIMINARIES

A closed, bounded and absolutely convex subset is called a disk. If D is a disk
in the locally convex space (E; �) then we let ED denotes the linear span of D,
equipped with the topology given by �D the gauge (Minkowski�s functional) of D.
This topology has a base of zero neighborhoods of the form faD : a > 0g, and makes
ED into a normed space such that � jED � �D jED , for � the original topology of
E. And (E; �) is said to be locally complete if every disk D � E, is a Banach disk,
that is (ED; �D) is a Banach space. Note that for metrizable spaces, completeness
and local completeness are equivalent. For local completeness, see [10] and [20].
According to Grothendieck (see [9]), we have that a space (E; �) satis�es the

strict Mackey condition (sMc) if for every bounded subset B � (E; �), there exists
a disk D � E containing B such that the topologies of E and ED agree on B, i.e.
� jB = �D jB and so on every subset of B. Note that every metrizable, unordered
Baire like or strictly barreled space satis�es the sMc (see [27]; [20], 5.1.27(ii) and
[8], Corollary 3.4). So, in particular, every Fréchet or acyclic (LF )-space is locally
complete and satis�es the sMc.
For a � -closed convex set C � E, denote by F (C) the set of all � -continuous

linear functionals f 2 (E; �)0 r f0g which are bounded above on C. For f 2
F (C) let Mf = sup ff(x) : x 2 Cg, and for � > 0 consider the slice S(f; C; �) =
fx 2 C : f(x) �Mf � �g. The set C is said to have the (�)-property with respect
to � if for every f 2 F (C) and for every neighborhood U of 0 in � , there exists
� > 0 such that S(f; C; �) can be covered by a �nite number of translates of U .
If a slice S(f; C; �0) is bounded in a locally complete locally convex space (E; �)

which satis�es the sMc, then there exists a Banach diskD � E containing S(f; C; �0)
such that �

��
S(f;C;�0) = �D

��
S(f;C;�0) . In this case, the Kuratowski index of non-

compactness of S(f; C; �0) associated to the disk D is �D(S(f; C; �0)) the in�mum
of all positive numbers r such that S(f; C; �0) is covered by a �nite number of sets
of �D-diameter less than r. The � -closed convex set C � E is said to have the
Mackey (�)-property if for every f 2 F (C) and D as above lim

�!0
�D(S(f; C; �)) = 0.

In this case, due to the fact that �D and � induce the same topology on the slice,
we get that C has the (�)-property with respect to � . Obviously, if (E; k�k) is a
normed space both (�)-properties coincide.

3. RESULTS

Proposition 1. Let C be a non-empty closed convex (unbounded) subset of the
locally convex space (E; �). Suppose that C has the quasi drop property. Then
every C-stream in E has a � -convergent subsequence.

Proof. Suppose there exists a sequence (xn)n 2 E such that xn+1 2 D(xn; C) n C,
for every n 2 N, but (xn)n does not have any � -convergent subsequence. So, for
every subsequence (xnk)k � (xn)n we have that A = fxnk : k 2 Ng is a closed set
and C does not have the quasi drop property. �

Proposition 2. Let C be a non-empty closed convex unbounded subset of the
locally convex space (E; �). Let f 2 F (C) and Mf := sup ff(x) : x 2 Cg. Suppose
that C has the quasi drop property. Then for every � > 0, the slice S(f; C; �) =
fx 2 C : f(x) �Mf � �g is a bounded set.
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Proof. Suppose this is not true. Then there exist f0 2 F (C), �0 > 0 and U0 2 �
an open convex and simetric zero neighborhood such that for every R > 0 we have
that S(f0; C; �0) is not contained in RU0; or equivalently, for every R > 0 there
exists xR 2 S(f0; C; �0) such that �U0(xR) > R, where �U0(�) is the � -continuous
Minkowski�s seminorm generated by U0.
Let M � Mf0 . Let x1 2 E be such that f0(x1) > Mf0 . Find 0 < �1 < 1 such

that (1� �1)f0(x1)� �1M > Mf0 .
Take x2 2 S(f0; C; �0) satisfying �U0 (�1x2 + (1� �1)x1 � x1) � 1. Let x2 :=

�1x2 + (1� �1)x1. So, �U0(x2 � x1) � 1 and
f0(x2) = �1f0(x2) + (1� �1)f0(x1) � (1� �1)f0(x1)� �1 jf0(x2)j

� (1� �1)f0(x1)� �1M > Mf0

Suppose now, we have found x1; x2; :::; xn 2 E such that xi+1 2 D(xi; C) n C,
for i = 1; 2; :::; (n � 1), with f0(xi) > Mf0 , for i = 1; 2; :::; n and �U0(xi � xj) � 1
for i; j = 1; 2; :::; n and i 6= j. In order to �nd xn+1, �nd 0 < �n < 1 such that
(1� �n)f(xn)� �nM > Mf0 and take xn+1 2 S(f0; C; �0) satisfying �U0(�nxn+1+
(1� �n)xn � xi) � 1, for all i = 1; 2; :::; n. Let xn+1 := �nxn+1 + (1� �n)xn. So,
�U0(xn+1 � xi) � 1, for all i = 1; 2; :::; n; and
f0(xn+1) = �nf0(xn+1) + (1� �n)f0(xn) � (1� �n)f0(xn)� �n jf0(xn+1)j

� (1� �n)f0(xn)� �nM > Mf0

Then the sequence (xn)n is a C-stream in E with no convergent subsequences. This
is a contradiction. �

Theorem 2. Let (E; �) be a locally complete locally convex space with the strict
Mackey condition (sMc) and C � E be a closed convex unbounded subset. Suppose
that C has the quasi-drop property. Then C has the Mackey (�)-property.

Proof. Let f 2 F (C). Find x0 2 E such that f(x0) > Mf . We may assume
that Mf > 1, then by proposition 2, the slice S1 := S(f; C; 1) is a � -bounded
closed set and B := cvx fS1 [ fx0gg is a bounded closed convex subset of E.
Since (E; �) is locally complete and has the sMc, there exists D � E a Banach
disk such that B � D and � jB = �D jB . In particular, � jS1 = �D jS1 . If
inf f�D (S(f; C; ") : 1 > " > 0g > 2�0, for some �0 > 0, then (see [26], Theorem
4) for every �nite dimensional subspace L � ED we have:

sup
x2S(f;C;")

( inf
y2L

�D(x� y)) �
1

2
inf
">0

�D(S(f; C; ")) > �0 � � � (1)

Take "1 < f(x0)�Mf . And choose x1 2 S(f; C; "1) such that
inf f�D(x1 � z) : z 2 span fx0gg > �0:

Let x1 = x0+x1
2 , then

f(x1) = f(
x0 + x1
2

) =
f(x0)

2
+
f(x1)

2
>
Mf + "1

2
+
Mf � "1

2
=Mf :

Moreover

inf f�D(x1 � z) : z 2 span fx0gg =
1

2
inf f�D(x1 � z) : z 2 span fx0gg >

�0
2

Now, suppose we have fx0; x1; :::; xng, such that xi 6= xj if i 6= j � n, and
i) f(xi) > Mf
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ii) inf f�D(xi � z) : z 2 span fx0; :::; xi�1gg > �0
2

iii) xi 2 D(xi�1; C)
for every i � n. Take "n+1 < f(xn) �Mf and by (1) �nd xn+1 2 S(f; C; "n+1)
such that

inf f�D(xn+1 � z) : z 2 span fx0; x1; :::; xngg > �0:

Let xn+1 =
xn+xn+1

2 then, in an analogous way to x1, f(xn+1) > Mf and

inf f�D(xn+1 � z) : z 2 span fx0; :::; xngg

=
1

2
inf f�D(xn+1 � z) : z 2 span fx0; :::; xngg >

�0
2
:

Then the sequence (xn)n satis�es (i,ii,iii) and the set A = fx0; x1; :::; xn; :::g � B is
�D-closed. Since the topologies � and �D agree on B, A is � -closed and A\C = ;.
Hence C, does not have the quasi drop property. This is a contradiction. �

Recall a generalization of Cantor�s intersection theorem due to Kuratowski [11]

Lemma 1. Given a complete metric space and a sequence of non-empty closed sets
fFngn2N, F1 � F2 � � � � � Fn � � � � with the property that, for � the Kuratowski

index of noncompactness, lim
n
�(Fn) = 0, then

1T
n=1

Fn is non-empty and compact.

Remark 1. a) Suppose that C has the Mackey (�)-property in the locally com-
plete locally convex space (E; �) which has the sMc, let f 2 F (C) and a sequence
("n)n 2 R+ convergent to zero. Then for every sequence (xn)n 2 C such that
xn 2 S(f; C; "n) there is a subsequence (xnk)k � (xn)n convergent in C.
b) In particular, under the assumptions of Theorem 2, every f 2 F (C) attains

its supremum on C:

Proposition 3. Let C be a closed convex unbounded subset of the Fréchet space
(E; �). Suppose that C has the quasi-drop property. Then int(C) 6= ;.

Proof. Since C is not bounded, there exists (xn)n 2 C such that does not have any
convergent subsequence. For every x =2 C, de�ne yn := 1

2nx +
nP
i=1

1
2n�i+1xi. So,

(yn)n is a sequence which has non-empty intersection with C. If this is not true,
then we have two possibilities:
i) There exists a subsequence (ynk)k � (yn)n which does not have convergent

subsequences. Then A := fynk : k 2 Ng is closed disjoint to C, and contradicts the
quasi drop property of C.
ii) Every subsequence (ynk)k � (yn)n has a convergent subsequence. Let (ynk)k �

(yn)n be convergent to y0 2 E. This implies that ynk+1 ! y0, too. Since
ynk+1 =

1
2 (ynk + xnk+1) and xnk+1 = 2ynk+1 � ynk , then (xnk+1)k converges to

y0. This is not possible.
Hence, fyn : n 2 Ng \ C 6= ;. Now, given z 2 E and L 6= 0, de�ne the home-

omor�sm Tz;L : E ! E given by Tz;L(x) = z + L(x � z), and the application
T(x1;:::;xn)(x) = Tx1;2 � Tx2;2 � � � � � Txn;2(x). It is easy to verify that for the el-
ements fxn : n 2 Ng of the original sequence we have that yn 2 C if and only if
x 2 T(x1;x2;:::;xn)(C). Then E n C =

S
n2N

T(x1;x2;:::;xn)(C). Since (E; �) is a Fréchet

space, the Baire category theorem implies that int� (C) 6= ;. �
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Proposition 4. Let (E; �) be a Frèchet space and C � E be a closed convex
unbounded subset with int� (C) 6= ;. Suppose that C has the Mackey (�)-property.
Then for every b 2 E r C the set D(b; C) is � -sequentially closed. Equivalently,
D(b; C) is � -closed.

Proof. Suppose there is a point b 2 E r C such that D(b; C) is not � -closed.
Then there exists a 2 D(b; C)� such that a =2 D(b; C). So, there are sequences
(yn)n 2 C and (�n)n 2 [0; 1] such that xn := �nb + (1 � �n)yn ! a respect to
� . Then the sequence �n ! 1 and for every � -continuous seminorm � such that
distinguish a subsequence (ynk)k � (yn)n we have that �(ynk)!1. By a convexity
argument the ray r = fb+ �(a� b) : � � 1g is contained in D(b; C)� r D(b; C).
Note that r \ C = ; and int� (C) 6= ; imply that there exists f 2 (E; �)0 r f0g
such that Mf := sup ff(x) : x 2 Cg � inf ff(x) : x 2 rg, evenmore f(a) = f(b),
so r � H = fx 2 E : f(x) = f(a)g. Then Mf � f(a). Since C has the Mackey
(�)-property, for every � > 0 the set S(f; C; �) is bounded. Consider the set A :=
fa; bg[fxn : n 2 Ng[S(f; C; �). Since A is bounded and (E; �) has the sMc, there
exists a Banach disk B � E such that A � B and �B jA = � jA , evenmore if we
make CB := C \ EB then fyn : n 2 Ng � CB � EB and xn ! a respect to �B , so
�B(yn)!1. Then we have that a 2 D(b; CB)

�B but a =2 D(b; CB). Note also that
int�B (CB) 6= ; and fB := f jEB 2 (EB ; �B)0rf0g, so fB 2 F (CB) and fB separates
r and CB . Hence all the previous construction and observations remains valid in the
Banach space (EB ; �B). If we prove that a 2 D(b; CB), which clearly is contained
in D(b; C) we are done. But in these conditions the proof continues exactly as the
rest of proof at this point of Proposition 5 in [13], where �B substitutes k�k. �

Note that Proposition 1 in [13] has been proved above for Fréchet spaces. Also,
Lemma 2 and Lemma 12 in [13] follow directly being true in the frame of re�exive
Fréchet spaces. Then Remark 2(iii) in [14] can be extended to

Remark 2. Let (E; �) be a re�exive Fréchet space and C � E an unbounded closed
convex subset. Suppose that C has the Mackey (�)-property and that int(C) 6= ;
then C contains a ray fc+ �b : � � 0g. Moreover, for any x 2 E there is � > 0
such that C contains the ray fx+ �b : � � �g

Theorem 3. Let (E; �) be a re�exive Fréchet space and C � E be an unbounded
closed convex subset. Then the following conditions are equivalent:
a) C has the quasi-drop property
b) int(C) 6= ; and C has the Mackey (�)-property.

Proof. Assume that C does not have the quasi drop property. So, there is a closed
set A � E disjoint to C such that for every x 2 A there is a 2 A n fxg satisfying
a 2 A\D(x;C). Take any point x1 2 A. Put d01 := inf fd(a;C) : a 2 A \D(x1; C)g
and �nd x2 2 A\D(x1; C) such that d2 := d(x2; C) < d01+1. Choose fx1; x2; :::; xng
such that xi+1 2 A \ D(xi; C) and xi+1 6= xi for i = 1; :::; n � 1 and if we make
d0i := inf fd(a;C) : a 2 A \D(xi; C)g then di+1 := d(xi+1; C) < d0i+ 1

i . Inductively
construct, in this way, a C-stream fxn : n 2 Ng with these characteristics, and
note that (dn)n � R is a convergent sequence to some "0 � 0. Note that this
C-stream fxn : n 2 Ng does not have any convergent subsequence. In order to see
this, suppose that the C-stream possess convergent subsequences and consider two
cases:
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a) "0 = 0. This means that there is a sequence (yn)n 2 C such that d(xn; yn)!
0. Let A1 := cvx fxn : n 2 Ng, by the lemma in [18], A1 \ C = ; and since
int(C) 6= ;, there exists f 2 (E; �)0 r f0g which separates A1 and C. We may
assume that f 2 F (C). For Mf := sup ff(x) : x 2 Cg, we have that f(yn) ! Mf .
By the Mackey (�)-property, the Kuratwoski�s lemma guarantees the existence of a
subsequence (ynk)k � (yn)N which is convergent to some y0 2 C and f(y0) = Mf .
Then d(xn; yo) ! 0 and since A is closed we get that y0 2 A \ C. This is a
contradiction.
b) If "0 > 0 and (xn)N has a convergent subsequence to some x0 2 A \T

i2N
D(xi; C), i.e. x0 2 A\D(xi; C), for every i 2 N. Then there exists a 2 Arfx0g

satisfying a 2 A \ D(x0; C) and d(a;C) < d(x0; C). Find n 2 N such that
1
n < d(x0; C)�d(a;C), then d(xn+1; C) > d(x0; C) > d(a;C)+

1
n � d

0
n+

1
n . Which

is a contradiction. Then the C-stream does not have any convergent subsequence.
Now, by the Remark 2, there exists b 2 E r f0g such that for every x 2 E there

is � > 0 such that C contains the ray fx+ �b : � � �g.
Let � := sup f� : (�b+ fxngN) \ C = ;g. Note that
i) �b+ C � C
ii) if �b+ xn 2 C, then �b+ xm 2 C for every m > n.

So, for every convex combination
nP
i=1

aixi where each ai � 0 and
nP
i=1

ai = 1, if

�b+
nP
i=1

aixi 2 int(C) then

�b+ xn+1 2 cvx
( 

�b+
nX
i=1

aixi

!
[ (�b+ C)

)
� int(C).

Which is not possible. Then (�b+ cvx fxn : n 2 Ng) \ int(C) = ; and there
exists f 2 (E; �)0 r f0g such that

inf ff(�b+ xn) : n 2 Ng =Mf = sup ff(x) : x 2 Cg

By the de�nition of �, there exists a sequence (ynk)k 2 C such that

d(�b+ xnk ; ynk)! 0 and f(ynk)!Mf

Since C has the Mackey (�)-property there exists a subsequence (ynl)l � (ynk)k
which is convergent to some y0 2 C. Then the sequence (xn)n has a convergent
subsequence. This is a contradiction. �

Recall an (LF )-space (E; �) = ind(En; �n) is acyclic if and only if for every one
of the Frèchet spaces (En; �n) there is an absolutely convex 0-neighbourhood Un
with
1. Un � Un+1, for every n 2 N
2. for every n 2 N there is m > n such that all topologies of the Frèchet spaces

(Ek; �k) for k > m coincides on Un.
Equivalently (see [28]), the (LF )-space (E; �) = ind(En; �n) is acyclic if and

only if it is boundedly retractive, that is, for every bounded subset B � E there
is n 2 N such that B is contained in En and the topologies � and �n coincide on
B. Recall acyclic (LF )-spaces appear frecuently in applications on distributions
theory.
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Remark 3. Let (E; �) = ind(En; �n) be an acyclic (LF )-space, where every (En; �n)
is a re�exive Frèchet space, so (E; �) is also a re�exive space (see [10], Proposition
11.4.5). Suppose that for every n 2 N, there is an unbounded and �n-closed convex
subset Cn � En such that Cn � Cn+1 and for every n 2 N there exists k > n such
that C \ En � Ck. Suppose also, that every Cn has the quasi drop property on the
space (En; �n), equivalently (by the previous Theorem), suppose every Cn has the
Mackey (�)-property and int�n(Cn) 6= ;. Then C =

S
n2N

Cn � E is such that

i) C\En has non empty �n-interior, for every n 2 N, since Cn � C\En. Then
int� (C) 6= ; and in an analogous way C is an � -closed convex unbounded subset of
(E; �).
ii) Let f 2 (E; �)0 be such that f 2 F (C) and ("i)i2N be a sequence of positive

numbers such that "i ! 0. By Proposition 2, the slice S(f; C; "1) is bounded in
(E; �), which is boundedly retractive. So, there exists n0 2 N such that S(f; C; "1)
is contained and bounded in (En0 ; �n0) , even more �

��
S(f;C;") = �n0

��
S(f;C;") Note

f jEn is �n-continuous and f 2 F (Cn) for every n 2 N. On the other hand, there
exists k > n0 such that S(f; C; "1) � C \ En0 � Ck. Since Ck has the Mackey
(�)-property, there exists D � Ek a Banach disk such that �D(S(f; Ck; "i))! 0 if
i ! 1. But S(f; C; "i) � S(f; Ck; "i), then �D(S(f; C; "i)) ! 0 if i ! 1. And C
has the Mackey (�)-property.
iii) Under these assumptions on the (LF )-space (E; �) and the subset C � E, for

every b 2 ErC the set D(b; C) is � -sequentially closed. It follows from proposition
4 and the sequential retractivity of the acyclic (LF )-space (E; �).

In order to see that C has the quasi drop property, based on the same hypothesis
and the previous observations (i,ii,iii), suppose that C does not have the quasi drop
property. Then there exists a � -closed subset A � E such that for every x 2 A there
is a 2 Ar fxg such that a 2 A \D(x;C). So, construct a stream in the following
way, take any x1 2 A1 := A\E1, then there exists a1 2 An01rfx1g for some n

0
1 such

that a1 2 An01\D(x1; C) := (A\En01)\D(x1; C). But D(x1; C)\En01 � D(x1; Cn1)
for some n1 > n01 then a1 6= x1 is such that a1 2 An1 \D(x1; Cn1). Since Cn1 has
the quasi drop property in (En1 ; �n1), there exists x2 2 An1 = A \ En1 such that
fx2g = fAn1 \D(x1; C)g \D(x2; Cn1) � A \D(x1; C).
In this way, form a stream fxn : n 2 Ng � A such that there exists a sequence of

natural numbers (ni)i2N with xi+1 2 Ani := A \ Eni� , another sequence (ai)i2N 2
A such that for every i 2 N, ai 6= xi and ai 2 Ani \ D(xi; Cni). Even more,
fxi+1g = (Ani \D(xi; C)) \D(xi+1; Cni).

Theorem 4. Let (E; �) = ind(En; �n) be a re�exive acyclic (LF )-space and C =S
n2N

Cn both as in remark 3. Then C sati�es quasi drop property, Mackey (�)-

property and int�C 6= ;.

Proof. On the basis of the proof of previous theorem 3. For every n 2 N, consider
a metric dn on the space En which de�nes the topology �n. Suppose that C does
not have the quasi drop property and construct a C-stream in the following way,
take again a � -closed set A such that for every x 2 A there is a 2 Arfxg such that
a 2 A \D(x;C). Take any point x1 2 A, we may assume x1 2 A1 = A \ E1. Lete�1 := inf fd1(a;C) : a 2 A1 \D(x1; C)g. Then �nd x2 2 A2 \D(x1; C) such that
�2 := d2(x2; C) < e�1 + 1. Then, let e�2 := inf fd2(a;C) : a 2 A2 \D(x2; C)g. Find
x3 2 A3 \ D(x2; C) such that �3 := d3(x3; C) <

� e�1 + 1
2 ; e�2 + 1

2

	
. Follow in this
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way to obtain fx1; x2; x3; � � �; xng such that xi+1 2 Ai+1 \D(xi; C) with xi+1 6= xi
for every i = 1; � � �; n � 1, and e�i := inf fdi(a;C) : a 2 Ai \D(xi; C)g. Then, �nd
xn+1 2 An+1 \ D(xn; C) such that �n+1 := dn+1(xn+1; C) <

�e�i + 1
i

	n
i=1
. Note

that this stream (xn)n2N does not have convergent subsequences. If the stream has
any convergent subsequence (xnk)k2N � (xn)n2N, by the sequential retractivity of
the (LF )-space (E; �), there exists n0 2 N such that (xnk)k2N is contained in En0
and it is �n0-convergent. So, it is exactly the same situation of cases (a) or (b) in
the previous theorem. Then it is not possible and the C-stream does not have any
convergent subsequence.
By the previous theorem, for every n 2 N the set Cn contains a ray and also by

remark 2, C contains a ray, too.
Let � := sup f� : (�b+ fxngN) \ C = ;g. Note that
i) �b+ C � C
ii) if �b+ xn 2 C, then �b+ xm 2 C for every m > n.
Then in analogous way to the previous theorem (�b+ cvx fxn : n 2 Ng)\int(C) =

; and there exists f 2 (E; �)0 r f0g such that
inf ff(�b+ xn) : n 2 Ng =Mf = sup ff(x) : x 2 Cg

By the de�nition of �, there exists a sequence (ynk)k 2 C such that
(�b+ xnk)� ynk ! 0 and f(ynk)!Mf

Since C has the Mackey (�)-property there exists a subsequence (ynl)l � (ynk)k
which is convergent to some y0 2 C. Then the sequence (xn)n has a convergent
subsequence. This is a contradiction. �
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